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ABSTRACT
Gut microbiota has a significant influence on brain-related diseases through the communication routes of the gut-brain axis.
Many species of gut microbiota produce a variety of neurotransmitters. In essence, the neurotransmitters are chemicals that influ-
ence mood, cognition, and behavior of the host. The relationships between gut microbiota and neurotransmitters has received
much attention in medical and biomedical research. However, the integration of the various proposed neurotransmitter signal
routes that underpin these relationships has not yet been studied well. To unlock the influence of gut microbiota on mental
health via neurotransmitters, the microbiota-gut-brain (MGB) axis, we gather the decentralized results in the existing studies
into a structured knowledge base. In this paper, we therefore propose a novel Microbiota Knowledge Graph based on a newly
constructed knowledge graph for uncovering the potential associations among gut microbiota, neurotransmitters, and mental
disorders which we refer to as MiKG. It includes many interfaces that link to well-known biomedical ontologies, e.g. UMLS,
MeSH, KEGG, and SNOMED CT, and is extendable by linking to future ontologies to further exploit the relationships between
gut microbiota and neurotransmitters. This paper present MiKG, an effective knowledge graph, that can be used to investigate
the MGB axis using the relationships among gut microbiota, neurotransmitters, and mental disorders.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Mental disorders, i.e., mental diseases, lead to a set of problems for
both individuals and society [1]. The common mental disorders
are depression, anxiety disorders, eating disorders, sleep disorders,
bipolar disorder, sex behavior disorder, and autistic disorder [2].
On one hand, for individuals, mental disorders cause significant
distress, even functional impairments in many aspects, e.g., emo-
tion, cognition, and behavior [2]. Mental disorders lead to increased
risks of suicidal wish, suicide attempt, and suicide [3], and espe-
cially major depressive disorder is the main cause of suicide in the
world [4]. It is estimated that up to 10% of the person with depres-
sion will commit suicide [2]. On the other hand, for society, mental
disorders cause heavy economic burdens worldwide [5]. According
to the World Health Organization (WHO), approximately one-fifth
of all people encounter mental disorders during their lifespan [2].
The number of people with mental disorders is steadily increasing
as reported by the Lancet Commission. It is estimated that the costs
caused by mental disorders will reach $16 trillion by 2030 [6]. The
investigation on the pathogenesis of mental disorders is crucial to
treat the patients.

The pathogenesis of mental disorders explicitly includes the role of
gut microbiota in the biochemical signaling communications that
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take place between the gastrointestinal tract and the central ner-
vous system [7,8]. The MGB axis provides a novel path to exploit
the pathogenesis of mental disorders and develop appropriate ther-
apeutic strategies. Gut microbiota influences brain-related diseases
by interacting with the enteric nervous system and central nervous
system [9,10], and may include multiple routes, such as the vagus
nerve, the hypothalamic-pituitary-adrenal (HPA) axis, the immune
system, cytokines production by immune system, secretion of the
short-chain fatty acids (SCFAs), modulation of the neurotransmit-
ters (Figure 1) [11,12]. Changes in these communication routes may
result in mental health problems. Neurotransmitters work as a cru-
cial part to regulate the MGB axis, we therefore focus on the sig-
nal and communication paths of neurotransmitters, along with the
interaction among neurotransmitters, gut microbiota, and mental
disorders.

Gut microbiota affects the level of neurotransmitters of the host,
meanwhile, the disruption of neurotransmitters leads to the risk
of mental disorders. A potential relationship is that gut microbiota
influence the mental health of the host by modulating the level of
neurotransmitters in the communication signal of the MGB axis
[13]. To investigate this potential relationship, articles on neuro-
transmitters modulation by gut microbiota have been collected and
analyzed [13]. These articles are scattered all over the world and
are produced by a multitude of institutions in various formats and
standards. Moreover, as these are regular research articles, they are
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either semi-structured or even unstructured free text. To in-depth
exploit the role of gut microbiota and neurotransmitters in the
development of mental disorders, we therefore aim to gather the
results in the existing studies into a structured knowledge base (i.e.,
knowledge graphs).

Knowledge graphs are a powerful tool to bring together both struc-
tured and unstructured disparate data silos. A knowledge graph is
a large-scale semantic network consisting of entities and concepts
as well as the semantic relationships among them [14] thereby sup-
porting making better decisions by searching for potential relation-
ships faster. Knowledge graphs have been proven to be useful tools
for integrating multiple medical knowledge sources and supporting
such tasks as medical decision-making [15], literature retrieval [16],
determining medical quality indicators [17], comorbidity analysis
[18]. They have been applied to practical problems in bio-medicine,
such as learning high-quality knowledge from a knowledge graph
based on electronic medical records [19,20], and predicting the rela-
tionship between microbes and human diseases [21]. A knowledge
graph is sufficient to achieve our aim of gathering the knowl-
edge from a variety of resources and reasoning the potential rela-
tionships among gut microbiota, neurotransmitters, and mental
disorders [22].

The main contributions of this study are presented as follows:

1. A new idea to collect the decentralized results of the regula-
tion between neurotransmitters and gut microbiota in existing
studies into a structured knowledge base.

2. A structured way to present the semantic relationships among
gut microbiota, neurotransmitters and mental disorders from
free text, and makes the knowledge both human-readable and
computer-processable.

3. A graph-based triple store allows the users to carry out
semantic query and question answering by using graph-based
approaches, and enables the users to obtain more implicit
information from the knowledge graph via the ontology rea-
soning.

4. A novel knowledge graph model supports researchers to make
better research designs by exploring the concealed relations
between gut microbiota and neurotransmitters.

2. RELATED WORK

In general, medical ontologies serve as the backbone for the seman-
tic integration. Ontologies work as semantic bridges from primary
research to novel therapies. At present, there already exist several
medical ontologies, including ontologies for mental diseases [23].
In general, mental disease ontologies do not describe the pathogen-
esis of the diseases, but only a collection of disease-specific vocab-
ularies and their role relationships. The MGB axis has been proved
to be a bidirectional communication between microbiota, the gut,
and the central nervous system [9,24]. It has become a potential
therapeutic target for many diseases (e.g. mental disorders) [25].
To analyze and understand the complex network of the MGB axis,
advanced computer techniques (e.g. knowledge graph and machine
learning) are required. Nowadays, psychiatrists and researchers
have the opportunity to benefit from complex patterns in brain,

behavior, and genes by using these advanced algorithms [26].
Both knowledge graph and machine learning have been applied in
various fields of medicine [27]. In this paper, we aim at exploiting
the MGB axis for mental disorders by constructing a knowledge
graph. We introduce the related work into three parts as follows.

2.1. The MGB Axis in Mental Disorders

Gut microbiota influence brain-related diseases by interacting with
the enteric nervous system and central nervous system through
multiple communication pathways (Figure 1) [12,28], including
the modulation of neurotransmitters. Gut microbiota may influ-
ence the mental health of the host by regulating the level of neuro-
transmitters. On one hand, current studies demonstrate that human
gut microbiota are inextricably linked with the mental health of
the human host [10]. The composition and diversity of gut micro-
biota in depressed patients significantly differ from those in healthy
controls [29], e.g., chronic administration of suitable probiotics
reduced the anxiety- and depression-related behaviors [30,31]. Gut
microbiota diversity is involved in the psychopathology of eating
[32] and sleeping disorders [33] in humans, while in germ-free
fruit flies, walking speed and daily activity are restored by mono-
colonization with L. brevis [34]. On the other hand, gut micro-
biota can produce or modulate the host neurotransmitters directly
[25,35]. Lactic acid bacteria such as L. plantarum and L. lactis, form
serotonin in vitro [36] and also species of Candida [37], Strepto-
coccus [38], and Enterococcus [39] have the ability to produce sero-
tonin. The family of Bacillus have also been reported to produce
dopamine [40] and norepinephrine [41]. Escherichia coli secretes
serotonin, norepinephrine, and dopamine in its growth medium
[42] while GABA is secreted by certain species of Lactobacillus [13].
Gut microbiota promote the synthesis of histamine [43] and acetyl-
choline [28] in vivo. The neurotransmitters mentioned above have
been implicated most often in the etiological studies of mental dis-
orders [44]. These associations between gut microbiota and mental
disorder, on the one hand, and the production of neurotransmitters
by various members of the gut microbial community, suggest that
manipulation of the gut microbiome may provide a promising path
to prevent and treat mental disorders.

2.2. Ontologies for Mental Disorders

Several well-designed biomedical ontologies exist which cover the
concepts of mental diseases. Mental Disease Ontology is a reposi-
tory, which was developed to facilitate representation for all aspects
of mental diseases [45]. It also cross-references with other databases
like NCI Thesaurus. The NCI Thesaurus is a reference terminology
and biomedical ontology that includes the vocabularies of mental
diseases related concepts [46]. The Disease Ontology database rep-
resents a comprehensive knowledge base of 8043 inherited, devel-
opmental, and acquired human diseases [47]. It maps disease and
medical vocabularies to several other databases, like MeSH and
SNOMED CT [47]. MeSH is the National Library of Medicine’s con-
trolled vocabulary thesaurus [48]. SNOMED CT is a systematic col-
lection of medical terms, designed to offer codes, terms, synonyms,
and definitions used in clinical documentation and reporting [49].
These databases may be considered to be the most comprehensive
collections of medical terms in the world, and they are freely avail-
able and updated regularly. They all support users in viewing the
role relationships, sibling concepts, and symptoms of the terms. It
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Figure 1 Illustration of the MGB axis. Gut microbiota influence the host health conditions through the bidirectional signal between the gut and the
brain. The bidirectional signal communication pathways include the vagus nerve, the HPA axis, the immune system, cytokines production by the
immune system, secretion of the SCFAs, modulation of the neurotransmitters.

enables us to obtain extensive information, such as the taxonomy
of gut microbiota, by linking with these databases. High-quality
ontologies facilitate data aggregation and comparison across differ-
ent disciplines which may speed up the transformation of primary
research into novel therapies [50].

2.3. Knowledge Graph in Mental Disorders

Knowledge graphs allow us to collect and analyze the vast range of
medical data available in existing databases, and thereby leverage
this knowledge to discover new possible treatment avenues. Knowl-
edge graphs have been proven to be useful tools for integrating
multiple medical knowledge sources [22]. Huang et al. proposed
a depression-centric knowledge graph which is useful for doctors
to explore the relationships among various knowledge resources
and to answer realistic clinical queries [51]. Using knowledge graph
technology to collect, select, and organize the data, Sang et al. estab-
lished a recurrent neural network model of known drug therapies,
providing an effective way to mining literature for the discovery of
new potential drugs, and moreover also providing putative mecha-
nisms of action from literature [52]. Because of the separation of the
knowledge base and algorithm programs, it is easy to manage and

extend the knowledge base. In this study, a knowledge graph is suit-
able for us to integrate, analyze, and further extend the knowledge
of the MGB axis. It realizes semantic searching, question answering,
and visual decision-supporting.

Taken together, constructing a knowledge graph not only gath-
ers existing knowledge resources that enables users to achieve
semantic queries and question answering but also supports med-
ical researchers making better decisions to implement novel
therapies for mental diseases. The MGB axis is a novel target to
investigate the pathogenesis of mental disorders. To exploit the role
of the MGB axis in treatment of mental disorders, we therefore aim
at constructing a knowledge graph which will enable us to query the
associations among gut microbiota, neurotransmitters, and men-
tal disorders. In this paper, we gather available decentralized data
from existing databases into a knowledge graph and will highlight
its usability by presenting several use-cases.

3. METHODOLOGY

We follow the workflow, as shown in Figure 2, to consolidate data
sources into the knowledge graph. First, data source collection. We
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Figure 2 Workflow for constructing the knowledge graph. By doing literature retrieval, we collect articles that studied on the relationship between
gut microbiota and neurotransmitters, as well as neurotransmitters and mental disorders. We extract entities, relations and attributes, and structure
them into Turtle format. The structured data stored in GraphDB which provides SPARQL query function. The knowledge base enriched by linking
with other databases, UMLS, MeSH, SNOMED CT, and KEGG. We named the knowledge graph as MiKG.

Table 1 Hierarchy of evidence based on the strength of RCTs design [35].

Level Design of Study

A Evidence obtained from a systematic review or at least one
randomized controlled trials

B Evidence obtained from well-designed pseudo-randomized
controlled trials of appropriate size

C Evidence from well-designed trials without randomization,
single group pre–post, cohort, time-series studies

D Evidence obtained from case series or nonexperimental studies
from more than one center or research group

E Opinions of authorities, based on clinical experience,
descriptive studies or reports of expert committees

collect the data sources by doing literature retrieval with a set of
keywords. Second, data extraction and structure. We extract the
entities and relations from the relevant articles, and structure the
relational data in Terse RDF Triple Language (Turtle) format. Third,
semantic integration. We describe the method of how we enrich our
knowledge base by semantic integrating with other existing ontolo-
gies, e.g., UMLS, MeSH, SNOMED CT, and KEGG databases.
Finally, constructing a knowledge graph. We input our knowl-
edge base into GraphDB to visualize the knowledge graph and
for further analyzing. At this stage, we designed four test cases
to demonstrate the performance of our knowledge graph with
SPARQL query.

3.1. Data Sources Collection

Neurotransmitters play major roles in maintaining human men-
tal health. Their exact numbers are unknown, but more than 200
unique chemical messengers have been identified. In this paper, we
take account of six major neurotransmitters: serotonin, dopamine,
norepinephrine, GABA, histamine, and acetylcholine, which yield
a sufficient data to construct a first knowledge graph of gut micro-
biota and neurotransmitters. Articles that revealed the relationships
between gut microbiota and neurotransmitters, published before
December 30, 2019, were identified through a literature search on
Google Scholar and PubMed with the keywords: gut microbiota, gut
flora, intestinal bacteria, neurotransmitter, serotonin, dopamine,
norepinephrine, GABA, histamine, and acetylcholine. With no lim-
itation of study design, all relevant articles were carefully reviewed
by three researchers. In the end, thirty-five articles on the regulation
between gut microbiota and neurotransmitters were identified for
the further extraction of entities and relations. As shown in Table 1,
the evidence level of these articles was ranked from A to E accord-
ing to their strength of the randomized controlled trial design as we
presented in Liu and Huang, 2019 [13]. The references of the
relationship between neurotransmitters and mental disorders were
identified through a literature search on PubMed with key-
words: serotonin, dopamine, norepinephrine, GABA, histamine,
acetylcholine, anxiety disorders, depressive disorder, sleep disor-
ders, eating disorders, sex behavior disorder, personality disorder,
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bipolar disorder, autistic disorder, cognition disorders, and learn-
ing disorders. If the number of retrieved references for each pos-
sible relationship is more than ten, we limit the references to no
more than ten which are sorted by the relevance. Relevance is sorted
according to the order and frequency of keywords in the title and
abstract.

3.2. Data Extraction and Structure

For constructing a knowledge graph, the most important process is
to extract the entities and relations from the available data sources.
In this paper, the first step, therefore, is to identify and extract enti-
ties from the content of relevant articles. Many text mining tools
exist that allow users to process structured and unstructured data
automatically, however, they all require a large training dataset, and
even so will typically fail when encountering new terminology. It
was therefore decided to manually obtain highly accurate annota-
tion of entities and semantic relations from the free text which was
done by three of us (T.L., X.P., and X.W.). Here, we have several
classes of annotations, divided among “entities” (neurotransmitter,
mental disorder, gut microbiota, and KEGG pathway), and “rela-
tions” (statement, relationship and reference). The six neurotrans-
mitters we mentioned earlier make up the class “Neurotransmitter.”
The class “Mental disorders” contains ten common mental disor-
ders: anxiety disorders, depressive disorder, sleep disorders, eating
disorders, sex behavior disorder, personality disorder, bipolar dis-
order, autistic disorder, cognition disorders, and learning disorders.
The forty-five gut microbiota entities extracted from articles con-
stitute the class “Gut microbiota.” The collection of the metabolic
pathways of the six neurotransmitters is named as “KEGG path-
way. ” The class “Statement” is used to describe the semantic rela-
tional properties between gut microbiota and neurotransmitters,
e.g., gut microbiota modulate the level of neurotransmitters. The
“Relationship” is used to depict the relations between neurotrans-
mitters and mental disorders, e.g., dopamine is associated with
depressive disorder. These extracted entities, concepts, and prop-
erties are integrated into one knowledge base in XML format. To
make it easier for querying the RDF, we convert the XML data into
Terse RDF Triple Language (Turtle) format (Figure 2). Therefore,
the resulting set is represented in Turtle syntax, which expresses
knowledge in the form of fact statements containing a triplet of
entities ⟨S, P, O⟩ as subject S has property P with value O [51,53].
Taking Escherichia coli increases the level of various neurotrans-
mitters, such as dopamine as an instance. Entities and relations
can be rewritten as triples: (Escherichia coli, increase, dopamine)
and (dopamine, subclass of, neurotransmitter). The structured RDF
statements are further stored in GraphDB for the visualization and
semantic query.

3.3. Semantic Integration

We enriched the semantic database by integrating with external
biomedical ontologies which are the Unified Medical Language
System (UMLS), the Kyoto Encyclopedia of Genes and Genomes
(KEGG), the Medical Subject Headings (Mesh), and the System-
atized Nomenclature of Medicine—Clinical Terms (SNOMED CT)
as shown in Figure 2.

3.3.1. UMLS

The UMLS is a repository of biomedical vocabularies and covers
well-known medical terminologies [54]. It integrates over 2 million
names for some 900,000 concepts from more than 60 families of
biomedical vocabularies, as well as 12 million relations among these
concepts. By providing a mapping structure among these vocabu-
laries, it thus allows one to translate among the various terminology
systems. Each Metathesaurus concept has a single concept unique
identifier (CUI) which link concept data across files. For exam-
ple, dopamine has a unique CUI number C0013030 that contains
its definition, properties, synonym details, and role relationships.
In this paper, as shown in Figure 2, CUI is used for characterizing
and linking the concepts of gut microbiota, neurotransmitters, and
mental disorders with the UMLS.

3.3.2. KEGG

KEGG databases contain multiple databases like pathway database
and compound database. The KEGG pathway database is a collec-
tion of manually curated pathway maps representing knowledge on
molecular interactions, cellular processes, organismal systems, and
human disease [55]. Each entry is identified by the map number,
e.g., map04728 for dopaminergic synapse that contains dopamin-
ergic synapse-related disease and the cited references. The KEGG
compound database is a collection of small molecules, biopoly-
mers, and other chemical substances that are relevant to biologi-
cal systems. Each entry is identified by the C number, e.g., C00047
for dopamine that contains its chemical structure and associated
relationships, along with various links to other databases. These
databases are updated regularly. As the Figure 2 shows, we link the
neurotransmitters with the KEGG databases for further research
purposes.

3.3.3. MeSH

MeSH is a comprehensive controlled vocabulary thesaurus, used
for indexing journal articles and books in the life sciences [56].
Most terms in MeSH accompanied by a short description or def-
inition, links to related descriptors, and a list of entry terms (like
synonyms or very similar terms) [57]. Each entry is identified by
the MeSH Unique ID, for instance, D004298 for dopamine that
contains its synonyms and role relationships in all MeSH cate-
gories (i.e., tree structures). In tree structures, each term has its
unique tree number that allows us to obtain extensive informa-
tion, such as the taxonomy of gut microbiota and the categories
of neurotransmitters. For example, dopamine with tree number
D02.092.211.215.406 is the downstream of biogenic monoamines
(tree number D02.092.211.215), while dopamine with tree number
D02.092.311.342 is the downstream of catecholamines (tree num-
ber D02.092.311). In this paper, as shown in Figure 2, MeSH ID is
used for linking the concepts of gut microbiota, neurotransmitters,
and mental disorders with the MeSH database.

3.3.4. SNOMED CT

SNOMED CT is a standardized, multilingual vocabulary of clinical
terminology. It provides codes, terms, synonyms, and definitions of
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Table 2 Triples in knowledge base—MiKG in GraphDB with UMLS, MeSH, and SNOMED CT datasets.

MiKG UMLS MeSH SNOMEDCT Explicit Inferred Total Expansion Ratio
2,465 3,081,799 13,756,783 4,291,226 21,132,273 10,136,725 31,268,998 1.48

Figure 3 Illustration of the knowledge graph. The blue and pink circular clusters represent TBox (terminologies) and ABox (assertions), respectively.
The labels of edges illustrate the specific attribute and relationship. Arrows are used to show the direction of the relationship from source to target.
Concepts are linked to UMLS/MeSH through CUI/Mesh ID. Neurotransmitters are linked to KEGG Database through Map-ID and C Number.

medical terms that are used in clinical documentation and report-
ing. It currently contains more than 300,000 medical concepts,
and each concept is represented by an individual SNOMED CT
Identifier (SCTID). For example, dopamine has individual num-
ber 412383006 as its unique SCTID. In this paper, as shown in
Figure 2, SCTID is used for linking the concepts of gut microbiota,
neurotransmitters, and mental disorders with the SNOMED CT
database.

3.4. Constructing Knowledge Graph

3.4.1. Knowledge graph in GraphDB

Graphs provide an incredible ability to model potential relation-
ships between information sources and capture linked informa-
tion (i.e., entity relationships) that many other data models cannot
capture, moreover, they enable users to visualize and analyze the
data in an interactive and exploratory fashion. We can visualize
the knowledge graph and carry out subsequent analysis and opti-
mization work through various graph database management sys-
tems such as GraphDB and Neo4j. In this paper, GraphDB was

selected to link text and data in big knowledge graphs with its func-
tions such as inserting and transforming any type of data into RDF
format, large-scale metadata management, a wide variety of query
languages (e.g. SPARQL and SeRQL), full-text search connectors,
visualization, semantic similarity search [58]. This database uses
graph structures for semantic queries with nodes, edges, and prop-
erties to represent and store data. Once the data is represented in
graph format, there are various graph analytic techniques to query
multiple relationships between entities in the constructed knowl-
edge graph.

3.4.2. SPARQL queries

In this paper, we use RDF as a directed, labeled graph data for-
mat to represent the knowledge graph information in GraphDB.
SPARQL is used as a query language of the Semantic Web [59].
It contains capabilities for querying required and optional graph
patterns along with their conjunctions and disjunctions. SPARQL
query contains triple patterns, much like the data itself, which uti-
lize the relationships to quickly navigate any linked data. Generally
a SPARQL query contains three components. The PREFIX at the
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top defines the list of ontologies we use in the query. The SELECT
DISTINCT statement defines the variables we want to select (these
can be any node in the RDF dataset). The WHERE clause is used
to specify a condition while fetching the data from multiple ontolo-
gies. Beside this, FILTER (condition) is a clause which can insert
into a SPARQL query to filter the results, e.g., limit the data output
based on some criteria. The ORDER BY command is used to sort
the result set in ascending or descending. The results of SPARQL
queries are displayed in various forms. In this paper, we use tables
to present the SPARQL result items in the case of a SELECT
query.

4. RESULTS

4.1. Construction of the Knowledge Graph

Data from the published studies of gut microbiota on neurotrans-
mitters were retrieved and integrated to create the microbiota
knowledge base. This knowledge base of 2,175 triples is stored
in GraphDB together with the UMLS (3,081,799 triples), MeSH
(13,756,783), and SNOMED CT (4,291,226 triples) databases, as
summarized in Table 2. In total, there are 21,131,983 explicit triples.
Among the facts, 10,137,028 new records are inferred from the
existing triple knowledge, as shown in Table 2. The expansion rate of
the knowledge base is 1.48. The whole triples-oriented knowledge
base contains 31,269,011 facts altogether, including both explicit
and inferred triples (data not shown).

4.2. Knowledge Graph Visualization

In theory, ontology is a “formal, explicit specification of a shared
conceptualization” [60]. It consists of a set of concepts (classes), a
set of attributes (data type properties), relationships (object prop-
erties), and constraints to abstractly represent a specific event
[61]. Ontology visualization is an important step in the process
of knowledge graph construction. Visualization provides a clear
overview of the hierarchy and connections in this knowledge graph.
Figure 3 depicts the visualization of our knowledge graph. A knowl-
edge base can be conceptually represented as a collection of ter-
minologies (TBox) and assertions (ABox) [62]. TBox is used to
describe a domain of interest by defining classes and properties as
a domain vocabulary as shown in blue in Figure 3. ABox is TBox-
compliant statements about individuals belonging to these sets, as
shown in the pink part in Figure 3. Nodes in orange labeled with
MeSH ID link internal classes with external concepts in MeSH via
Mesh ID. Therefore, the constructed knowledge graph is able to
integrate side information for semantic enrichment. In Figure 3,
the labels of edges illustrate the specific attribute and relationship.
Arrows are used to show the direction of the relationship from
source to target.

4.3. Case Study

To test the proposed knowledge graph for possible associations
between gut microbiota, neurotransmitters, and mental disorders,
we designed four test cases with various specific conditions. We
aim to construct a knowledge graph that is easy to be used by the
users, especially those who don’t know the knowledge of semantic

web standards and the structure of MiKG. Therefore, we designed
the SPARQL queries as templates so that users can adjust param-
eters to suit a particular use case. The MiKG knowledge base,
SPARQL query codes, and results of four cases are free available at
GitHub.

Listing 1: The SPARQL query code for test case 1-disease-based query. The
major depressive disorder is defined as the given condition to return vari-
ables.
PREFIX . . .
SELECT DISTINCT ?GM ?CUI ?Modulation ?NTM ?Ref ?PMID
WHERE {{mikg : Serotonin rdfs:label ?NTM .
?st1 mikg : hasNeurotransmitter mikg : Serotonin ;
mikg : hasGutMicrobiota ?GM ;
mikg : hasModulation ?Modulation ;
mikg : hasReference ?Ref .
?Ref mikg : hasPMID ?PMID .
?GM umls : cui ?CUI}
FILTER EXISTS
{?st2 mikg : hasNeurotransmitter mikg:Dopamine ;
mikg : hasGutMicrobiota ?GM ;
mikg : hasModulation ?Modulation.}
FILTER (lang(?GM) = ‘en’)}
ORDER BY ASC(?GM)

4.3.1. Case 1—disease-based query

In this case, we consider a situation that a person encounters
major depressive disorder. We are interested in which species of
gut microbiota may cause her depressive disorder by regulating
the levels of both serotonin and dopamine. The SPARQL query
code is presented in Listing 1, and the query returns 9 results. The
obtained results indicate that increase of serotonin and dopamine
caused by the eight species of gut microbiota is associated with the
development of major depressive disorder of a person. As shown in
Table 3, the eight species of gut microbiota namely Bacillus cereus,

Table 3 Results of test case 1—Disease-based query. The resulting eight
species of gut microbiota are associated with development of major
depressive disorder in a person. The “CUI” represents the gut microbiota
species in UMLS. GM, gut microbiota; NTM, neurotransmitter. N/A for
PMID means the reference is not included in PubMed.

GM CUI Modulation NTM PMID/Ref

Bacillus cereus C0004590 Increase Serotonin;
dopamine

30718848

Burkholderia
oklahomensis

C1898603 Increase Serotonin;
dopamine

30718848

Escherichia coli C0014834 Increase Serotonin;
dopamine

19845286

Hafnia alvei C0315259 Increase Serotonin;
dopamine

Ozogul 2004

Klebsiella
pneumoniae

C0001699 Increase Serotonin;
dopamine

Ozogul 2004

Lactobacillus
plantarum

C0317608 Increase Serotonin;
dopamine

26522841

Lactobacillus
plantarum

C0317608 Increase Serotonin;
dopamine

Ozogul 2012

Morganella
morganii

C0315276 Increase Serotonin;
dopamine

Ozogul 2004

Streptococcus
thermophilus

C0318180 Increase Serotonin;
dopamine

23265537

GitHub
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Burkholderia oklahomensis, Lactobacillus plantarum, Hafnia alvei,
Klebsiella pneumoniae, Morganella morganii, Escherichia coli, and
Streptococcus thermophilus. Each bacterium has its CUI number in
UMLS. These bacteria are involved in the onset of major depressive
disorder by increasing the levels of both serotonin and dopamine.
This query returns six references that support these facts, as shown
in Table 3. Except for two of the references that are not included in
PubMed, each of the others has its PMID. Interestingly, there is no
gut microbiota species associated with a reduction of serotonin and
dopamine in our knowledge graph. In a word, members of the gut
microbiota are involved in human’s depressive disorder by regulat-
ing the levels of both serotonin and dopamine.

4.3.2. Case 2—gut microbiota-based query

Since neurotransmitters and gut microbiota usually affect each
other, we therefore consider the situation that neurotransmitters
influence the growth of gut microbiota in this test case [13,25].
That is, we aim to study what is the influence of serotonin and
norepinephrine on the growth of gut microbiota. We designed the
SPARQL query code as shown in Listing 2, and we obtained 9 results
by doing the query. As shown in Table 4, serotonin inhibits the
growth of Candida albicans and promotes the growth of Entero-
coccus faecalis, Pichia guilliermondii, Rhodospirillum rubrum, and
Saccharomyces cerevisiae. Four different references provide these
study results, as presented in Table 4. Two references support that
norepinephrine stimulates the growth of Yersinia enterocolitica,
Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa
(Table 4). Each bacterium has its CUI number in UMLS and each
reference has its PMID in PubMed. Taken together, the growth of
gut microbiota is regulated by various neurotransmitters.

Listing 2: The SPARQL query code of test case 2-gut microbiota based
query. We define serotonin and norepinephrine as the specified conditions
to return a set of distinct values.
PREFIX . . .
SELECT DISTINCT ?NTM ?Regulation ?GM ?CUI ?PMID ?Level
WHERE {{mikg : Serotonin rdfs : label ?NTM .
?st1 mikg : hasNeurotransmitter mikg : Serotonin ;
mikg : hasGutMicrobiota ?GM ;
mikg : hasRegulation ?Regulation ;
mikg : hasEvidenceLevel ?Level ;
mikg : hasReference ?Ref .
?GM umls : cui ?CUI .
?Ref mikg : hasPMID ?PMID. }
UNION
{mikg : Norepinephrine rdfs:label ?NTM .
?st2 mikg : hasNeurotransmitter mikg:Norepinephrine ;
mikg : hasGutMicrobiota ?GM ;
mikg : hasRegulation ?Regulation ;
mikg : hasEvidenceLevel ?Level 1;
mikg : hasReference ?Ref .
?GM umls : cui ?CUI .
?Ref mikg : hasPMID ?PMID . }
FILTER (lang(?NTM) =‘en’)}

4.3.3. Case 3—multiple disease-based query

We consider a male patient with three types of disorders: cognition
disorders, personality disorder, and learning disorder. To identify
which neurotransmitters and gut microbiota are associated with the

Table 4 Output records for the test case 2 query. Neurotransmitters
influence the growth of gut microbiota. The “CUI” represents the gut
microbiota species in UMLS. NTM, neurotransmitter; GM, gut microbiota.

NTM Regulation GM CUI PMID Level

Serotonin Inhibit Candida
albicans

C0006837 16157477 C

Serotonin Promote Enterococcus
faecalis

C0038404 8505913 C

Serotonin Promote Pichia
guilliermondii

C0319552 8505913 C

Serotonin Promote Rhodospirillum
rubrum

C0035503 9702725 C

Serotonin Promote Saccharomyces
cerevisiae

C0036025 21261078 C

Norepinephrine Promote Yersinia
enterocolitica

C0043406 17229058 C

Norepinephrine Promote Salmonella
enterica

C0445750 17229058 C

Norepinephrine Promote Escherichia coli C0014834 17229058 C
Norepinephrine Promote Pseudomonas

aeruginosa
C0033809 19517106 C

male patient’s mental problems, we design the code to query the
association within the knowledge graph, as shown in Listing 3. The
SPARQL query generates fifteen results, as shown in Table 5. Results
show that fifteen species of gut microbiota relate to. In our knowl-
edge base, serotonin is the only neurotransmitter that is associated
with cognition disorders, personality disorder, and learning disor-
der at the same time. As listed in Table 5, the fifteen gut microbiota
species are Paenibacillus, Bacillus cereus, Burkholderia oklahomen-
sis, Acinetobacter baumannii, Lactobacillus plantarum, Bacteroides
uniformis, Clostridium ramosum, Hafnia alvei, Klebsiella pneu-
moniae, Morganella morganii, Escherichia coli, Candida albicans,
Lactococcus lactis subsp lactis, Lactococcus lactis subsp cremoris, and
Streptococcus thermophilus.

Listing 3: The SPARQL query code of test case 3 - neurotransmitter based
Query. Three different mental disorders are set as conditions to call a list of
variables.
PREFIX . . .
SELECT DISTINCT ?GM ?CUI ?Modulation ?NTM ?PMID ?Level
WHERE {mikg : Cognition-disorders rdfs : label ?MD1 .
mikg : Personality-disorder rdfs : label ?MD2 .
mikg : Learning-disorder rdfs : label ?MD3 .
{?re1 mikg : hasMentalDisorder mikg : Cognition-disorders ;
mikg : hasNeurotransmitter ?NTM ;
?st mikg : hasNeurotransmitter ?NTM ;
mikg : hasGutMicrobiota ?GM ;
mikg : hasEvidenceLevel ?Level ;
mikg : hasModulation ?Modulation ;
mikg : hasReference ?Ref .
?Ref mikg : hasPMID ?PMID .
?GM umls : cui ?CUI . }
FILTER EXISTS
{?re2 mikg : hasMentalDisorder mikg : Personality-disorder ;
mikg : hasNeurotransmitter ?NTM . }
FILTER EXISTS
{?re3 mikg : hasMentalDisorder mikg : Learning-disorder ;
mikg : hasNeurotransmitter ?NTM . }
FILTER (lang(?MD1) =‘en’)
FILTER (lang(?MD2) =‘en’)
FILTER (lang(?MD3) =‘en’)}
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4.3.4. Case 4—neurotransmitter-based query

Histamine is a typical neurotransmitter that relates to mental disor-
ders. Histamine levels are also closely tied to the composition and
diversity of the gut microbiota [63]. On the one hand, a wide diver-
sity of bacteria from the human gut produces and degrades his-
tamine [64]. On the other hand, gut microbiota promote the human
basophil leukocytes cells and mast cells to release histamine that
influence the host immunological processes [65]. In this test case,
we therefore aim to investigate the association between gut micro-
biota and mental disorders when histamine is increased or reduced.

Table 5 Output records for the test case 3 query. By regulating the level
of serotonin, fifteen species of gut microbiota are associated with
cognition disorders, personality disorder, and learning disorder. GM, gut
microbiota; NTM, neurotransmitter; MD, mental disorder.

GM CUI Modulation NTM PMID/Ref Level

Bacillus cereus C0004590 Increase Serotonin 30718848 B
Burkholderia
oklahomensis

C1898603 Increase Serotonin 30718848 B

Acinetobacter
baumannii

C0314787 Increase Serotonin 30718848 B

Paenibacillus C1011299 Increase Serotonin 30718848 B
Lactobacillus
plantarum

C0317608 Increase Serotonin 26522841 B

Bacteroides
uniformis

C0314925 Increase Serotonin 25860609 B

Clostridium
ramosum

C0315111 Increase Serotonin 30718836 B

Escherichia coli C0014834 Increase Serotonin 19845286 C
Candida
albicans

C0006837 Increase Serotonin 16157477 C

Lactococcus
lactis subsp
lactis

C1449851 Increase Serotonin Ozogul
2012

C

Lactococcus
lactis subsp
cremoris

C0544170 Increase Serotonin Ozogul
2012

C

Streptococcus
thermophilus

C0318180 Increase Serotonin 23265537 C

Hafnia alvei C0315259 Increase Serotonin Ozogul
2004

C

Klebsiella
pneumoniae

C0001699 Increase Serotonin Ozogul
2004

C

Morganella
morganii

C0315276 Increase Serotonin Ozogul
2004

C

We design the SPARQL code to query this association in our knowl-
edge graph, as shown in Listing 4. The association between gut
microbiota and histamine are ranked to 5 evidence levels from A to
E (cf. Subsection 3.1), we only consider the association of evidence
level C for specific in this test case. As shown in Table 6, histamine
is regulated by three species of gut microbiota, i.e., Escherichia
coli, Lactobacillus vaginalis, and Streptococcus thermophilus. By reg-
ulating histamine levels, these three bacteria are involved in the
development of five mental disorders which are anxiety disorders,
bipolar disorder, depressive disorder, learning disorders, and sleep
disorders.

Listing 4: The SPARQL query code of test case 4 - neurotransmitter based
Query. Histamine is defined as the specific condition to retrieve various
values.
PREFIX . . .
SELECT DISTINCT?GM ?Modulation ?NTM ?PMID ?Level ?MD
WHERE {{mikg : Histamine rdfs : label ?NTM .
?re mikg : hasNeurotransmitter mikg:Histamine ;
mikg : hasMentalDisorder ?MD .
?st mikg : hasNeurotransmitter mikg : Histamine ;
mikg : hasGutMicrobiota ?GM ;
mikg : hasModulation ?Modulation ;
mikg : hasEvidenceLevel ?Level ;
mikg : hasReference ?Ref .
?Ref mikg : hasPMID ?PMID .
FILTER (lang(?NTM) =‘en’)
FILTER (?Level =‘C’)}}
ORDER BY ASC(?GM)

5. DISCUSSION AND OUTLOOK

In this study, we constructed a knowledge graph to explore the
role of the MGB axis, especially the neurotransmitters pathway,
in mental disorders. We extracted the entities of gut microbiota
and neurotransmitters, along with their relational properties, from
the free text in articles. Due to the sources of knowledge extrac-
tion being diverse, the knowledge obtained by different sources is
not compatible, which puts forward a demand for knowledge inte-
grating. We linked the gut microbiota with mental disorders via
neurotransmitters through the construction of the knowledge

Table 6 Output records for the test case 4 query. Three gut microbiota species associated with six mental disorders by modulating the concentration of
histamine. The “Level” refers to the evidence level of histamine modulated by gut microbiota. GM, gut microbiota; NTM, neurotransmitter; MD, mental
disorder.

GM Modulation NTM PMID Level MD
1 Escherichia coli Increase Histamine 2412960 C Anxiety disorder
2 Escherichia coli Increase Histamine 2412960 C Bipolar disorder
3 Escherichia coli Increase Histamine 2412960 C Depressive disorder
4 Escherichia coli Increase Histamine 2412960 C Learning disorders
5 Escherichia coli Increase Histamine 2412960 C Sleep disorders
6 Lactobacillus vaginalis Increase Histamine 26394683 C Anxiety disorder
7 Lactobacillus vaginalis Increase Histamine 26394683 C Bipolar disorder
8 Lactobacillus vaginalis Increase Histamine 26394683 C Depressive disorder
9 Lactobacillus vaginalis Increase Histamine 26394683 C Learning disorders
10 Lactobacillus vaginalis Increase Histamine 26394683 C Sleep disorders
11 Streptococcus thermophilus Increase Histamine 23265537 C Anxiety disorder
12 Streptococcus thermophilus Increase Histamine 23265537 C Bipolar disorder
13 Streptococcus thermophilus Increase Histamine 23265537 C Depressive disorder
14 Streptococcus thermophilus Increase Histamine 23265537 C Learning disorders
15 Streptococcus thermophilus Increase Histamine 23265537 C Sleep disorders
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graph. The knowledge graph semantic database was enriched by
integrating it with other biomedical ontologies, thereby providing
users relevant and accurate information and relationships, as a solid
basis for exploring the role of the neurotransmitters in the patho-
genesis of mental disorders.

The relative success of our knowledge graph attribute to the dis-
tinctive features that not presented in other knowledge graphs. Its
main feature is to facilitate users to explore the influence of gut
microbiota on mental health. So far, there have been many appli-
cations of knowledge graphs in the medicine, such as drug discov-
ery [52], targets predication [66], and disease classification [67].
There are few studies on knowledge graphs and mental disorders.
Huang et al. crated a depression knowledge graph by integrating
various knowledge resources about depression (e.g., clinical trials,
antidepressants, medical publications, clinical guidelines, etc.) [51].
It provides a data infrastructure to explore the relationship among
various knowledge and data sources about depression. What is lack-
ing is a knowledge graph that can be used to investigate the patho-
genesis of mental diseases. Current studies indicate that the MGB
axis plays a significant role in maintaining mental health of the host.
We therefore construct the knowledge graph MiKG to unlock the
influence of gut microbiota on mental health via neurotransmitter,
one of the pathways of the MGB axis.

The performance of a knowledge graph supporting the effective
discovery of implicit relationships is no doubt important. In a
domain knowledge graph database, relationships can be divided
into explicit relationships and implicit relationships. Explicit rela-
tionships are relationships that can be extracted directly from the
original data, and implicit relationships are dynamic relationships
that need to be calculated through traversing the knowledge graph.
We conduct 4 case studies to demonstrate the discovery potential of
our knowledge graph by SPARQL querying. Simply, we can seman-
tically search the explicit relationships, such as the relationship
between gut microbiota and neurotransmitters, as we performed in
test case 1 and case 2 (Subsubsections 4.3.1 and 4.3.2). For discover-
ing the implicit relationships, we can explore the potential influence
of gut microbiota on mental health via neurotransmitters, as we did
in test case 3 and case 4 (Subsubsections 4.3.3 and 4.3.4). By enrich-
ing the knowledge graph with other existing databases we enable
users access to other databases and obtains more implicit relation-
ships. For example, we integrate the KEGG database of pathways
into our knowledge base, so that enables the discovery of which
metabolic pathways the gut microbes influence are related to men-
tal health. We have the complete entities and concepts of gut micro-
biota, neurotransmitters, and mental disorders in the knowledge
base which extended by linking to UMLS, MeSH, and SNOMED
CT. Crucially, each of those databases do not describe any relation
between, e.g., gut microbiota and mental disorder; our MiKG aims
to fill this gap. Taken together, our knowledge graph has the discov-
ery potential to find implicit relationships as we expected.

Our knowledge graph, however, has limitations. Gut microbiota has
an impact on mental health by regulating neurotransmitters, but
that is not as simple as one bacterium and one neurotransmitter. As
we know, the gut microbiome consists of many thousands of species
of microorganisms [68], while dozens of neurotransmitters related
to mental health have been discovered so far [69]. Besides, over 300

different mental disorders cataloged in the DSM-5 (Diagnostic and
Statistical Manual of Mental Disorders) [70]. However, the num-
ber of explicit relations between gut microbiota, neurotransmitters,
and mental disorders retrieved from literature current MiKG was
limited by the necessity of manual extraction from literature, as this
allowed us to focus on a small but accurate sub-set of the data as a
proof of principle.

The accuracy and completeness of extracted relations in the MiKG,
also limits the precision and reliability of the semantic search
results. Therefore, our future work will emphasize improving the
accuracy and completeness of the knowledge base. To do this
effectively while not sacrificing too much accuracy, we will adopt
text-mining approaches and relations extraction tools. Manual pro-
cessing ensures high accuracy of the data but cannot cover the
complete knowledge domain. Taken together, our future work will
apply advanced automated processing to discover the relations
between gut microbiota, neurotransmitters, and mental disorders,
and update the knowledge base automatically.

6. CONCLUSION

To predict the relationships between gut microbiota and mental
disorders with neurotransmitters as the linking element, we first
constructed a knowledge graph by integrating the disparate knowl-
edge from existing biomedical studies in a semantic way. Such a
knowledge graph, MiKG, benefits us to discover implicit knowledge
by semantic query and reasoning. We designed various test cases
to demonstrate the potential identification and prediction perfor-
mance of the knowledge graph by using the SPARQL query. Results
indicate that MiKG is a powerful tool for uncovering potential
associations among gut microbiota, neurotransmitters, and men-
tal disorders. It not only effectively supports identifying explicit
relationships, such as relationships between gut microbiota and
neurotransmitters, but importantly also enables to infer implicit
relationships, such as the influence of gut microbiota on mental
health via neurotransmitters. In summary, our novel MiKG knowl-
edge graph developed here, is an effective tool to identify, explore,
and predict the relationships among gut microbiota, neurotrans-
mitter, and mental disorders. It has the potential to infer reason-
able hypotheses, thereby accelerating the development of new treat-
ment for mental disorders, and benefit the field of the MGB axis
investigation.
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