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1. INTRODUCTION

A microbiota may consist of bacteria, archaea, fungi, viruses, and
protists. All of the genetic materials in a specific ecological com-
munity are called the microbiome [1]. Recent studies in the micro-
biome have developed rapidly and researchers have found the
microbiota could have a profound impact on human health. For
example, studies have shown microbes in the human body have
a great impact on immunology, digestion, absorption, and other
physiological activities [2]. It is believed that there might be two-
way communication between the brain and the intestine [3]. In
addition, the intestinal flora may have a close relationship with irri-
table bowel syndrome [4] and it may lead to chronic kidney disease
[5]. Therefore, the microbiome is often called the second human
genome [6]. Compared with our human genome, it is much easier
to intervene with the microbiota, which will make it an ideal tar-
get for medical treatment. However, it is estimated the number of
microbial genes in the human body is much larger than the human
genome. For example, the human gut contains more than 1 billion
bacterium which have encoded more than 3 million genes [7]. Most
of the species in the human body are concentrated in the intesti-
nal tract, oral cavity, genital tract, and skin surface. However, the
microbial communities in different environments are varying [8].
It is of great significance to understand the composition and func-
tion of the microbial community for different diseases or physio-
logical states, which will greatly benefit the disease diagnosis and
treatment[9].

) Corresponding author. Email: xpjiang@mail.ccnu.edu.cn

With the rapid development of high-throughput sequencing technology, massive microbial data has been accumulated. The
understanding of the microbial data could help us to find the relationships between microbes and diseases. However, due to the
high dimensionality, sparseness, and complexity of the data, traditional machine learning methods have insufficient learning
and representational ability. Meanwhile, the rise of deep learning enables us to deal with these complex problems effectively. In
this survey, we introduce the application of machine learning in microbial data analysis and focus on microbial classification
and feature selection tasks. In particular, we discuss the current application and challenges of deep learning in microbial studies.
Based on these discussions, we recommend that before using deep learning to conduct microbiome-wide association studies, it
is essential to consider prior knowledge such as phylogeny, which would improve the accuracy and interpretability of the model.
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However, the microbiome is complex, high diversity, and depen-
dent. It is estimated there are more than 1000 kinds of bacteria
in the human gut [10]. With the help of next-generation sequenc-
ing (NGS) technology, we could retrieve all genetic information in
the sample [11]. NGS technology provides us with opportunities
to understand the composition, function, and dynamic evolution
of microbial communities, but it is often limited by metagenomic
data analysis methods because the metagenomic data is too large
and complex to be studied through visual means such as correla-
tion analysis [12]. As a result, these methods need to guide new
biological hypothesis or discovery from the massive data. To study
the microbiome, researchers start to utilize machine learning meth-
ods to mine the relationships between microbes and their hosts.
It is believed machine learning could learn and discover patterns
from the data. However, the performance for each algorithm is usu-
ally dependent on feature engineering which is a process of using
domain knowledge to extract features from the raw data. When per-
formed manually, the process of feature engineering for machine
learning can be prone to error. Besides, manual feature engineer-
ing is problem-specific—the algorithm cannot be applied to solve
other issues. Another shortcoming of manual feature engineering is
that the understanding of the problem limits it before thinking up
so many features [13]. With automated feature engineering, none of
these obstacles exist. Deep learning is a sub-discipline of machine
learning and it automatically learns an end-to-end model from the
data, eliminating the need for manual feature design. Therefore,
deep learning could discover highly complex relevant features to
improve prediction [14].
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Deep neural networks (DNNs) are applied to conduct the micro-
bial data analysis, but there are few surveys of deep learning in
the microbiome rather than bioinformatics. In this survey, we will
review related work in data analysis in microbiome studies, espe-
cially deep learning. Our survey will include four parts: first, we will
give a brief introduction to the microbiome research background
and its relationship with human health. Also, we will explain why
it is time to apply machine learning and deep learning for micro-
bial data analysis; second, we will review the research of machine
learning in microbial data analysis; after that, we will discuss deep
learning in microbial studies; lastly, we will explain some challenges
of deep learning. The survey gives a snapshot of the field at present
and it is naturally somewhat biased towards the authors’ view, even
though we hope that it provides useful information to the reader.

2. MACHINE LEARNING IN MICROBIOME

It is possible to understand better the hierarchical structure and
composition of the microbial community via classifying microbial
samples. The classification of microbial samples refers to identify
microbial samples from different phenotypes in the environment
[15]. One of the main goals of the microbial study is to explore
the relative abundance of microbes, find the association between
microbes and diseases, and analyze the different states of the dis-
ease to lay the foundation for further application in the follow-up
treatment [9] or forensic identification [16].

The machine learning methods are used to conduct microbiome
data analysis, including two steps: data preprocessing (such as fea-
ture selection) and model prediction (such as supervised learn-
ing). The general workflow of machine learning methods on micro-
biome data analysis includes (Figure 1): first of all, sequencing data
needs to be collected from bacterial communities associated with
various environments or hosts. What’s more, these sequences can
be directly used as input to a machine learning model, or they

data collection

Taxonomy

machine learning

can be preprocessed. The preprocessing step usually improves the
prediction results of the model. For example, it will be easier to
construct a better prediction model if the model can learn the hier-
archical relationship of the microbiome in advance. Finally, it may
also improve the prediction of machine learning algorithms for the
microbial associated disease after embedding structural informa-
tion, such as the phylogenetic relationship among pedigrees and the
average nucleotide similarity network between sequences.

Operational taxonomic units (OTUs) are the most common data
representation for marker genes (16S rRNA genes) sequencing [17].
Knights et al. [15] benchmarked a classification task algorithm and
found that the random forest (RF) achieved the best performance.
Although the classification error of the elastic net (ENet) classifier
was higher than that of RE it was still helpful for feature selection
as the preprocessing step of other classifiers. They suggested using
a machine learning method to analyze the human body related to
microbial composition and summarized the overall analysis pro-
cess. Host-related microbial community composition was specific
and closely related to diseases. Statnikov et al. [18] systematically
compared 18 major machine learning methods in the classification
task. They found the most efficient machine learning methods for
accurately classifying sample data were SVM, Kernel Ridge Regres-
sion, and Laplace prior Bayesian Logistic Regression.

Machine learning could also be applied to detect microbial com-
munity composition and functional correlation analysis. Yazdani
et al. [19] focused on the functional characteristics of the micro-
biome of inflammatory bowel disease to determine how microor-
ganisms played a role in health and diseases. They developed and
trained a two-step classifier to identify major changes in intestinal
microbiome abundance between healthy and inflammatory bowel
disease populations via the Kolmogorov-Smirnov (KS) test and RS.
To determine the relationship between gut microbiota composition
and clinical features of irritable bowel syndrome, Tap et al. [20] ana-
lyzed samples using L1 regularized logistic regression and found 90
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OTUs that could be used to measure the severity of irritable bowel
syndrome. Pasolli et al. [21] developed a machine learning analysis
framework to assess the association between microbiome and phe-
notypes. They recommended using a RF approach based on species’
abundance to predict diseases.

3. DEEP LEARNING IN MICROBIOME

Deep learning has achieved amazing success in areas such as image
recognition, text processing, and automatic translation. Therefore,
more and more researchers are trying to apply deep learning tech-
niques to biomedical data analysis [22,23,24,25]. Compared with
traditional machine learning, the advantage of deep learning lies
in its end-to-end learning ability, which can automatically dis-
cover multiple representations to achieve better prediction. Among
these deep learning architectures, low-level features (e.g., patterns
in DNA sequence motifs or pathological images), high-level fea-
tures (e.g., damaged mRNA splicing or asymmetric skin lesions),
and output (e.g., cancer detection), all of these features can be
learned from the data to reduce or eliminate the need for manual
feature engineering [26].

Currently, with the development and application of high-
throughput technology, a large number of microbiome data are
emerging [27,28]. As a result, the deep learning method for metage-
nomics has attracted more and more attention. This section will
focus on the following three applications of deep learning in micro-
bial data analysis: metagenomic classification, metagenomic gene
prediction, and microbiome-wide association studies (MWAS).

3.1. Metagenomic Classification

To characterize the diversity of the microbial community is one of
the main objectives for metagenomic research. The classification
and analysis of microbial sequencing reads are known as taxon-
omy, in which sequence reads are classified or clustered to spe-
cific bins [29,30,31]. Abe et al. [32] proposed an unsupervised
neural network algorithm names self-organizing maps (SOMs) for
de novo genome binning. SOM was used to analyze the dinu-
cleotide, trinucleotide, and tetranucleotide frequencies in various
prokaryotic and eukaryotic genomes. Essinger et al. [33] applied
the adaptive resonance theory (ART) to cluster similar genome
fragments and showed ART achieved better performance than k-
means. Interestingly, methods based on interpolating the Markov
model were better than these early genome binning techniques [34].
Liang et al. [35] reported a bidirectional long short-term memory
(LSTM) with the self-attention mechanism named DeepMicrobes
to conduct taxonomic classification for metagenomics, which could
precisely identify species from microbial community sequencing
data. In addition, Rojas-Carulla et al. [36] introduced a convo-
lutional neural network (CNN) model for the shotgun metage-
nomic classification named GeNet. GeNet was trained from raw
DNA sequences and exploited a hierarchical taxonomy between
organisms via a novel architecture. However, neural networks were
less frequently used for reference-based taxonomic classification
because the training was time-consuming. TAC-ELM [37] was the
first neural network-based method to classify massive amounts of
metagenomic data, which introduced a new sequence composition-
based taxonomic classifier via extreme learning machines. Fiannaca

et al. [38] proposed a 16S short-read sequences based on k-means
representation and deep learning architecture, in which a classifi-
cation model was generated for each taxon (from phyla to genera).

It is believed that viruses play an important role in the micro-
bial community [39]. However, the viruses are difficult to classify
because they have not marker genes. It is essential to detect viral sig-
nals from the mixed metagenomic sequences. Fang et al. [40] pre-
sented a 3-class classifier named PPR-Meta, a CNN architecture,
to identify both phage and plasmid fragments from metagenomic
assemblies. Also, Ren et al. [41] developed a CNN model named
DeepVirFinder to identify viral sequences in metagenomics, while
VirNet used ‘deep attention’ [42], a technique commonly used
for natural language processing. In addition, Tampuu et al. [43]
proposed a CNN-based method named ViraMiner to detect viral
contigs in diverse human biospecimens. ViraMiner was composed
of the global max-pooling (pattern branch) and global average-
pooling (frequency branch) after the convolutional layer. Kristo-
pher et al. [44] introduced a hybrid approach to mining viral
genomes named VIBRANT which uses neural networks of protein
signatures from nonreference-based similarity searches with hid-
den Markov models (HMMs) as well as a v-score metric to maxi-
mize identification of diverse and novel viruses.

3.2. Metagenomic Gene Prediction

The NGS techniques used in metagenomics have generated many
thousands of short reads. Gene recognition is a necessary step to
fully understand the functions, activities, and effects of genes in
cellular processes. Accurate identification of genes in metagenomic
fragments is one of the fundamental problems for metagenomics
[45]. In many situations, metagenomic reads are from thousands of
highly heterogeneous species. Besides, high sequence coverage for
a single species is often unavailable. It is difficult to assemble short
reads into long overlapped contigs. One way is to bypass the assem-
bly and find the genes directly from these short reads. Zhang et al.
[46] proposed a deep stack network learning model named Meta-
MFDL to predict metagenomic genes by fusing multiple character-
istics of short reads, such as monoamine acid usage, ORF length
coverage, and Z-curve features.

Meanwhile, bacterial antimicrobial resistance is usually genetically
encoded and it is urgent to identify resistance genes in metage-
nomic samples [47]. Arango-argoty et al. [48] proposed DeepARG-
SS and DeepARG-LS to determine the potential resistance gene,
gene exchange hotspot, and diffusion pathway of a new antibiotic.
Both DeepARG-SS and DeepARG-LS were constructed for short-
read sequences and full gene length sequences, respectively. Due to
the emergence of antibiotic-resistant bacteria, there is an alarming
requirement to discover new antibiotics. Recently, Jonathan et al.
[49] trained a DNN to predict antibiotics through the discovery of
structurally distinct antibacterial molecules.

3.3. Microbiome-Wide Association Studies

MWAS are to predict the relationship between the microbiome
and the disease state. MWAS are similar to genome-wide asso-
ciation studies. They aim to identify microbial species, genes, or
metabolites associated with the disease phenotype [9,50,51], which
often involve feature selection and classification.
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In the metagenomic sample classification task, Ditzler et al. [52]
tried two deep learning methods: deep belief network and recursive
neural network, to determine whether the methods of DNNs were
suitable for metagenomic analysis. They found traditional machine
learning methods were powerful classifiers when the data was lim-
ited. Also, Nguyen et al. [53] proposed a method named MET2IMG
to predict the disease state. To make it easy for CNNs, MET2IMG
mainly utilized “filling” and t-SNE embedding methods to con-
struct “synthetic images” from the metagenomic data. Since related
organisms tend to have similar characteristics, the phylogeny is
helpful to classify and infer ecological function, as well as a tool
for organizing and understanding the microbial world [54]. There-
fore, phylogenetic knowledge could improve the model’s perfor-
mance. Reiman et al. [55] introduced PopPhy-CNN to predict host
phenotypes via metagenomic samples by embedding phylogenetic
knowledge. Fioravanti et al. [56] introduced a new deep learning
architecture, Ph-CNN, based on the CNN to conduct classifica-
tion metagenomic samples. The ancestor distance defined on the
phylogenetic tree and the sparse version of multi-dimensional scal-
ing of Ph-CNN were used to embed the phylogenetic tree into the
Euclidean space. Zhu et al. [57] proposed a deep forest that kept the
spatial structure between nodes by embedding the phylogenetic tree
to conduct the classification. Nathan et al. [58] conducted a com-
parison of methods, including tree-based (such as gcForest) and
CNN-based (such as PopPhy-CNN) on microbial abundance fea-
tures in different datasets.

Feature selection for MWAS is to discover the meaningful micro-
bial biomarkers to guide the noninvasive diagnosis [59]. Many fea-
ture selection methods have been proposed for the microarray gene
expression and mass spectrometry-based proteomics data to iden-
tify disease-associated genes or proteins [60]. When algorithms are
applied to these high-dimensional data, a critical problem is known
as the curse of dimensionality. Dimensionality reduction is one of
the powerful ways to address the issue [61]. Autoencoder is a deep
learning approach to learn latent representation to achieve this pur-
pose [62]. However, autoencoder is considered as a feature extrac-
tion process. To deal with feature selection via deep learning, Zhu
et al. introduced an ensemble feature selection method based on
Deep Forest to conduct MWAS [57]. Compared to DNNs, Deep
Forest is composed of decision trees and each decision tree could
guide feature selection [63]. Meanwhile, Zhu et al. proposed a graph
embedding approach to identify meaningful microbial biomarkers
through deep feedforward neural network [64].

4. PROBLEMS OF DEEP LEARNING FOR
MICROBIOME

The biological data is complex and hierarchical, it is not easy to
get valuable information with simple analysis tools. Compared with
traditional machine learning methods, deep learning has advan-
tages on pattern discovering automatically. However, there are
still many challenges for deep learning to conduct microbial data
analysis [65].

4.1. Black Box

In the last decade, the application of DNNs to long-standing prob-
lems has brought a breakthrough in performance and prediction

power [66]. However, high accuracy, deriving from the increased
model complexity, often comes at the price of loss of interpretabil-
ity, i.e., many deep models behave as black-boxes and fail to pro-
vide explanations on their predictions. While in specific application
fields, this issue may play a secondary role in high-risk domains,
e.g., health care or self-driving cars, it is crucial to building trust in
a model and being able to understand its behavior. We are unlikely
to trust a prediction if we do not understand how it was made. It is
believed there are two major reasons why the interpretable model
is vital for bioinformatics, not only microbial data analysis. First,
understanding how predictions are made is essential to identify
mistakes or biases in the input data when the model is trained. Sec-
ond, deep learning could learn novel patterns from the massive bio-
logical data, which will guide meaningful insights if the model can
be interpreted [67].

However, What makes it even worse is that there is no unified and
standard definition for the interpretability of deep learning [68].
Techniques of interpretability have been adopted to a wide range of
problems, and various meanings, such as understanding, interpret-
ing, or explaining. For example, Grégoire et al. [69] gave an excellent
review of methods to interpret and understand DNNG. In their sur-
vey, the authors focused on the post-hoc interpretability to under-
stand what the model predicts (e.g., categories) in terms of what
is readily interpretable (e.g., the input features) based on a trained
model.

4.2. A Large Amount of Training Data

A large number of data is required to train DNNs. However, due to
privacy concerns and high-cost issues (e.g., shotgun sequencing), it
is impractical to obtain a large amount of biological data. Machine
learning methods are superior to DNNs, such as XGBoost [70]
when the data is limited. One of the main challenges to train DNNs
without enough data is the risk of overfitting: when the training
error is low while the test error is large, the models’ generalization
ability will become poorly. Fortunately, there are some approaches
to alleviate the overfitting problem, such as Dropout [71]. Dropout
will randomly remove neurons and their connections, which will
reduce the capacity or thinning of the network during training.
However, the overfitting problem is still one of the threats for the
small biological or microbial data sets.

Furthermore, DNN requires a lot of computing resources dur-
ing training, which is often computationally intensive and time-
consuming and usually requires graphics processing units (GPUs)
to process.

4.3. Model Selection and Hyper-Parameters
Tuning

At present, there are many types of DNNs and the practitioners and
researchers propose a growing number of new models. However,
each model is varying in different scenarios, and it isn’t easy and
direct to choose a deep learning architecture for the specific task.
Also, many hyper-parameters such as regularization degree, learn-
ing rate, number of neurons, etc., are required to tune and debug for
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the model to achieve optimal results. Therefore, efficiently choosing
a suitable network architecture and fine-tune its hyper-parameters
for a specific dataset is a time-consuming task given the staggering
number of possible alternatives.

Automated machine learning (AutoML) is proposed, which is
devoted to developing algorithms and solutions to enable peo-
ple with limited machine learning background knowledge to use
machine learning models easily [72]. In addition, many software
libraries make the implementation of deep learning models easier.
TensorFlow [73], Keras [74], CNTK [75], and Pytorch [76] are some
examples of such libraries. Despite the availability of such libraries
and tools, the tasks of picking the right neural network model and
its hyper-parameters are usually complex and iterative. As a result,
Steven et al. [77] proposed a method named multi-node evolution-
ary neural networks for deep learning (MENNDL), which was used
to automate network selection on computational clusters through
hyper-parameter optimization performed via genetic algorithms.
Besides, automatic model selection (AMS) is a flexible and scalable
method to automate the process of selecting artificial neural net-
work models [78].

5. CONCLUSIONS

There are two basic questions to answer for the microbial studies,
who’s there and what they are doing. Many studies use the 16S rRNA
gene as a taxonomic marker, then develop predictive models that
can classify samples of disease states or habitats correctly. Com-
pared with 16S rRNA gene sequencing, the shotgun metagenomics
offers increased resolution, enabling a more specific taxonomic and
functional classification of sequences as well as the discovery of new
bacterial genes and genomes. Therefore, deep learning is preferred
for the metagenomic data analysis, such as the classification or con-
tig binning. But most of the current researches are focusing on dif-
ferent deep learning architectures(e.g., CNN or LSTM) and there is
less work on deep transfer or reinforcement learning for the micro-
bial studies.

This paper discussed deep learning for microbial data analysis,
including metagenomic classification, metagenomic gene predic-
tion. In particular, this survey introduced the application of deep
learning in MWAS and further suggested a deep learning method
based on the phylogenetic tree, which could improve the classifica-
tion performance. We also analyzed the problems of deep learning
in biomedical data analysis, including the model’s interpretabil-
ity, the need for a large amount of data and hyper-parameters
tuning.
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