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ABSTRACT

Breast ultrasound is a widely utilized modality for breast cancer screening since its noninvasive, 
radiation-free, low-cost, and easy-to-operate characteristics. The segmentation of breast tumor 
ultrasound images aims to accurately delineate the lesion area, thereby enhancing the usability 
and reliability of auxiliary diagnosis. In the realm of deep learning, U-Net and its variants based 
on fully convolutional networks have demonstrated outstanding performance in various medical 
image segmentation tasks. TransUNet also has achieved significant breakthroughs in medical image 
segmentation by introducing a global self-attention mechanism to overcome the limitations of 
traditional U-Net in handling long-range dependencies. In this paper, we propose a D-TransUNet to 
implement breast tumor ultrasound image segmentation. This model explores the introduction of a 
central dense connection module to more effectively fuse multi-scale features between the encoder 
and the upsampling. Finally, we conducted a series of comprehensive experiments on the BUSI 
dataset. The results demonstrate that D-TransUNet achieves an accuracy (Acc) of 0.9621, precision 
(Pre) of 0.9062, Recall of 0.9073, F1-score of 0.9033, mIoU of 0.8403, Dice of 0.8934, and 95% HD of 
23.3299. These results show that the proposed method exhibits excellent accuracy in challenging 
scenarios, including complex shapes and blurred boundaries in breast tumor ultrasound image 
segmentation tasks, and providing a robust and reliable support for auxiliary breast cancer diagnosis.

*Corresponding author. Email: danglee@hactcm.edu.cn
†These authors contributed equally to this work and should be considered co-first authors.
© 2024 The Authors. Published by Guangdong AiScholar Institute of Academic Exchange (GDAIAE).
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

1.  INTRODUCTION

Breast cancer is one of the most prevalent malignant tumors in 
women, with its incidence ranking first among female malig-
nancies [1]. Early diagnosis and precise segmentation of breast 
cancer are of paramount significance for the treatment and 
prognosis. Image segmentation technology plays a vital role in 
the diagnosis and treatment of breast cancer, aiding doctors in 
accurately locating and classifying tumor areas. However, the 
segmentation of breast cancer images encounters several chal-
lenges. Due to the complex structure and rich texture features 
of breast tissue, traditional image segmentation methods often 
struggle to accurately delineate tumor regions.

In recent years, the rapid advancement of deep learning 
has significantly improved the accuracy of semantic segmen-
tation. Convolutional neural networks (CNN) have consistently 
held a dominant position in image analysis [2]. By progressively 
extracting semantic features from images, CNNs can compre-
hensively capture local spatiotemporal features, leading to 
high-precision detection and recognition. In 2015, Ronneberger 
et al. introduced a U-Net network based on fully convolutional 

neural networks (FCN) [3], which has profoundly influenced the 
development of the medical imaging field through its classic 
encoder-decoder structure and skip connections. Furthermore, 
it delivers precise and rapid segmentation results, making it well-
suited for scenarios with a limited number of images. Almajalid 
et al. employed U-Net networks for breast cancer ultrasound 
image segmentation, resulting in segmentation images that 
were more accurate than previous methods [4]. Yap et al. pre-
sented an end-to-end solution, the fully convolutional network 
(FCN-AlexNet) [5], for identifying breast ultrasound lesions using 
deep learning techniques. Gour et al. developed a deep residual 
neural network model (DeepRNNetSeg) for automatic nucleus 
segmentation of histopathological breast cancer images [6]. 
Guan et al. were the first to proposed integrating the concept of 
dense connections into U-Net, creating a fully dense connected 
network FD-Unet [7]. In the retinal blood vessel segmentation 
task, Zhang et al. introduced the DenseInception U-Net, which 
integrates the residual idea, the Inception module, and dense 
connections [8].

In various medical image segmentation tasks, numerous 
improved versions of U-net networks have demonstrated strong 
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performance, including Unet++ [9], Unet3+ [10], Attention 
U-Net [11], and nnU-Net [12]. However, owing to the inductive 
bias, weight sharing, and local perception characteristics of con-
volution, CNN-based segmentation models lack the modeling 
ability for long-range dependency problems and exhibit limited 
spatial perception ability, hindering the further advancement of 
segmentation networks.

To tackle the aforementioned challenges, researchers have 
proposed Transformer models [13]. The Transformer effectively 
compensates for the limitations of convolution. Currently, 
some researchers have adapted the Transformer structure for 
the computer vision domain. Wang et al. introduced TransBTS 
in the brain tumor segmentation task, utilizing multi-scale 
information and the attention mechanism to improve the 
accuracy of breast tumor segmentation [14]. Building on the 
SwinTransformer concept [15], Cao et al. divided the network 
into multiple stages to generate features of different scales, pro-
posing a pure Transformer U-shaped network Swin-Unet [16]. 
In specific experiments, this network outperforms traditional 
Transformer and convolution-combined networks. Chen et al. 
[17] proposed TransUNet, effectively improving the accurate 
segmentation of lesions in medical images by combining the 
global modeling capability of Transformer with the local feature 
extraction advantage of U-Net. Zhang et al. [18] proposed a par-
allel branch TransFuse network, incorporating parallel branches 
of Transformer and CNN architectures to simultaneously capture 
global dependencies and low-level spatial details. Wang et al. 
[19] presented UCTransNet based on the U-Net. By combining 
cross-channel transformer (CCT) and channel-wise cross atten-
tion (CCA) for feature fusion in the decoder, they achieved state-
of-the-art results on multiple benchmark datasets for medical 
image segmentation in an end-to-end manner. Liu et al. [20] 
proposed the TransUNet+, drawing inspiration form UCTransNet 
and TransUNet. They designed a feature enhancement module 
to improve the features of the skip connection. To fuse multi-
level feature information from the encoder and simultaneously 
address long-distance dependencies to bridge the semantic 
gap between the encoder and decoder, Li et al. [21] proposed 
the UCFilTransNet network. They designed the Cross-FilterTrans 
block in the skip connection to effectively alleviate issues 
related to semantic information loss and information asym-
metry caused by continuous down-sampling. However, these 
transformer architectures also suffer from some limitations. First, 
compared to CNN, it is difficult to capture local context informa-
tion. Therefore, we can reasonably assume that combining CNN 
to the benchmark transformer can enhance the extraction abil-
ity of feature. Moreover, the existing transformer model is actu-
ally composed of residual and normalization modules. There is 
no direct connection path between the final output layer and 
the previous transformer layers, and the gradient disappearance 
is prone to occur. Therefore, we consider that introducing addi-
tional dense connections to relieve this problem.

To address the aforementioned limitations, we proposed a 
new segmentation framework named D-TransUNet (introduc-
ing a Central Dense Block in TransUNet). Compared with the 
TransUNet, D-TransUNet mainly has the following advantages:

(1)		 Combining CNN and Transformer: D-TransUNet estab-
lishes an end-to-end network framework by integrating a 
Transformer encoder and a U-Net configuration. Within this 
framework, the CNN is tasked with extracting low-level fea-
tures, while the Transformer encoder processes global con-
text information. This combined approach fully leverages 

the advantages of the Transformer model to enhance the 
performance of medical image segmentation.

(2)		 Self-attention mechanism: The Transformer encoder in the 
D-TransUNet network incorporates self-attention mecha-
nism, allowing it to adaptively learn relationships between 
different positions in the input image. This mechanism is 
effective in capturing long-distance dependencies within 
the image, thereby contributing to the improved accuracy 
of segmentation results.

(3)		 Skip Connections and Central Dense Block: In order to 
strengthen the information transmission and feature fusion 
between different layers, D-TransUNet combines skip con-
nections with the proposed Central Dense Block. This inte-
gration effectively combines multi-scale features from the 
encoder with up-sampled features, leading to improved 
segmentation precision, particularly in terms of details and 
edges.

(4)		 Moreover, extensive experimental results on public breast 
ultrasound datasets show that D-TransUNet has better 
robustness in breast tumors segmentation.

2.  RELATED WORK

2.1.  The Combination of CNN and Transformer

In the field of computer vision, attention mechanisms are widely 
employed to capture crucial information in images. The tradi-
tional convolution method achieves feature extraction through 
the weight aggregation function on the local receptive field, and 
then distributing it across the entire feature map. In recent years, 
researchers have explored integrating attention mechanisms 
into CNNs to enhance feature representation. Among them, Hu 
et al. [22] proposed SE Net, applying the attention mechanism 
to the channel dimension attribute of the image and improving 
the model performance. Additionally, Woo et al. [23] introduced 
the spatial attention module SAM based on SE Net, incorporat-
ing spatial dimension modeling on top of channel attention. 
These studies show that the introducing attention mechanism 
can enhance the performance of convolution module. However, 
excessive reliance on attention mechanisms causes the model 
excessive sensitive and compromise its ability to perceive global 
feature. Therefore, it is necessary to explore how to reasonably 
use and integrate attention mechanisms to trade off the expres-
sion of local and global features for improved performance.

Transformer, initially proposed by Vaswani et al. [13] and 
applied to natural language processing, comprises stacked 
encoders and decoders with a multi-head self-attention 
mechanism and residual structure. To adapt Transformer for 
computer vision, Vision Transformer applies the self-attention 
mechanism to global images for image classification tasks [24]. 
Through the weighted average operation based on the input 
feature context, this method has achieved performance equiv-
alent to or even superior to CNNs in numerous visual tasks. And 
then Chen et al. proposed a new network, TransUNet, estab-
lishing a self-attention mechanism from the perspective of 
sequence-to-sequence prediction. However, the inductive bias 
ability of Self-Attention is weaker than that of CNN and requires 
a substantial amount of data. Therefore, TransUNet integrates 
the CNN module. First, the image undergoes convolution to 
capture detailed high-resolution spatial information, and then 
the tokenized image block in the feature map is encoded as 
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an input sequence to extract the global context [5]. In medical 
image segmentation tasks, this approach shows superior per-
formance, surpassing previous models.

2.2. � Breast Cancer Ultrasound  
Image Segmentation

Breast cancer have surpassed lung cancer to become the cancer 
type with the highest global incidence [25]. Ultrasonography is 
a routine examination for breast diseases. However, ultrasound 
images of breast tumors face several challenges, including 
severe speckle noise, artifacts, low image resolution and con-
trast, and the intricate shapes of tumors.

Traditional automatic segmentation methods, including 
threshold segmentation, edge detection, and Markov random 
field, generally have average performance when dealing with 
ultrasound images characterized by low contrast and strong 
noise. In the pursuit of enhancing breast cancer ultrasound 
image segmentation, these methods based on traditional con-
volution networks has been widely employed. For instance, Cho 
et al. [26] proposed the Breast Tumor Integrated Classification 
Network (BTEC Net) for the classification of breast tumors in ultra-
sound images. It utilized the Residual Feature Selection UNet 
(RFS UNet) for exclusive segmentation of images with abnormal 
BTEC Net classification. Wu et al. [27] proposed a context level 
set method for breast tumor segmentation. Wang et al. [28] 
proposed the PDPNet, a progressive dual priori network specif-
ically designed for segmenting breast tumors from dynamically 
enhanced images. Li et al. [21] designed the MultiIB-Transformer 
structure within the MultiIB-TransUNet. This structure is com-
posed of a single Transformer layer and multiple Information 
Bottleneck (IB) blocks. It serves to reduce the number of model 
parameters and has demonstrated good performance on breast 
cancer datasets.

In the realm of breast cancer ultrasound image segmenta-
tion research, the high-efficiency extraction of edge features 
is the key to improving model performance. The fusion of 
multi-scale local context and global context features, theoret-
ically leads to better segmentation accuracy. Therefore, in the 
exploration of breast cancer ultrasound image segmentation 
methods, the improvement of edge features remains a prom-
ising direction to improve segmentation accuracy.

3.  METHODS

3.1.  D-TransUNet Model Architecture

The proposed D-TransUNet network is depicted in Figure 1. This 
network comprises three main modules: the CNN-Transformer 
hybrid encoding module, the central dense connection module, 
and the decoder module. For an input image, the feature 
extraction begins by feeding images into the hybrid encoder 
module. Subsequently, the Transformer module encodes the 
feature maps into an input sequence for extracting global con-
text information. Then, the central dense connection module 
facilitates multi-scale features fusion depending on dense con-
nections. Finally, the upsample module is employed to upsample 
the encoded features and combine them with high-resolution 
features from the encoder. This results in a lightweight end-to-
end U-shaped network structure that effectively leverages local 
context information from the feature extraction stage, enhances 
the receptive field in the upsampling stage, and improves detail 
preservation. By combining these three modules and examining 
the segmentation results, it’s evident that D-TransUNet achieves 
superior edge prediction and outperforms other networks in 
terms of segmentation performance.

3.2.  Hybrid Encoder

The encoder section initially with three layers of convolutional 
downsampling on the input image. It embeds image patches 
extracted from the CNN features and adds positional encoding. 
And then the embedded patches, as one-dimensional vectors, 
are input into a 12-layer Transformer structure. Concretely, an 
improved ResNet-50 and Vision Transformer (ViT) serve as the 
backbones for CNN and Transformer, respectively. The convolu-
tional layers utilize StdConv2d, replacing the original BatchNorm 
with GroupNorm. The original ResNet-50 structure contains 
stage1 and stage2, while stage3 and stage4 are merged into 
a new stage3 in the enhanced ResNet-50, resulting in three 
stage1, four stage2, and nine stage3 components.

As illustrated in Figure 2, the internal processing of the 
hybrid encoder involves dimension changes. After the Stem 
operation, the resolution becomes 1/4 of the original image, 
transforming from [512, 512, 3] to [108, 108, 64]. The Stage1 
operation maintains the resolution, changing from [108, 108, 64] 

Figure 1 | D-TransUNet network model.
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to [108, 108, 256]. Stage2 reduces the resolution to 1/8, altering 
from [108, 108, 256] to [56, 56, 512]. Stage3 further reduces the 
resolution to 1/16, converting from [56, 56, 512] to [28, 28, 1024]. 
Subsequently, dimension reduction is performed by a 1×1 
convolution, resulting in a serialized input to the Transformer: 
[28, 28, 1024] ® [28, 28, 768] ® [784, 768]. Here, the dimen-
sions correspond to the sequence required by the Transformer, 
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into the Transformer module for global feature extraction. The 
entire process is summarized in Table 1.

3.3.  Central Dense Connection

Similar to TransUNet, skip connections are employed to fuse 
multi-scale features from the encoder with upsampled features. 
Shallow and deep features are concatenated to alleviate spatial 
information loss caused by downsampling. However, downs-
ampling in the encoding part only captures shallow features of 
the image. Directly fusing these features with the final layer of 
upsampled features can result in a loss of crucial information. 
Therefore, this paper introduces the central dense connection 
module to fill the core of the TransUNet network architecture, 

Figure 2 | Internal structure of the hybrid encoder. Figure 3 | Central dense connection module.

Table 1 |  Hybrid encoder processing flow
Step Processing Input Output

stem 3-layer convolutional downsampling [512, 512, 3] [108, 108, 64]

stage1 ResNet-50 stage1 [108, 108, 64] [108, 108, 256]

stage2 ResNet-50 stage2 [108, 108, 256] [56, 56, 512]

stage3 ResNet-50 stage3 and stage4 [56, 56, 512] [28, 28, 1024]

Convolutional downsampling conv 1×1 [28, 28, 1024] [28, 28, 768]

Serialization input Serialize for transformer input [28, 28, 768] [784, 768]

Patch embedding Embed patches [784, 768] × [768, 768] [784, 768]

ensuring connections between each scale in the horizontal 
direction.

As shown in Figure 3, in this module, the input of each 
convolution layer encompasses the outputs of all previous 
convolution layers, which achieve comprehensive feature 
reuse. The fusion of high and low-level features enhances the 
network resistance to overfitting. After concatenating two fea-
ture maps, a 1×1 convolution is used to halve the number of 
channels while retaining the same number of channels as in 
the pre-concatenation feature maps. The paper introduces four 
central dense connections.

In deep learning networks, as the network depth increases, 
the problem of gradient disappearance becomes more pro-
nounced, and high-level features obtained in the deep layers 
may suffer from insufficient precision. Therefore, introducing 
central dense modules at the lowest layer of the TransUNet 
network is crucial to improving the convolutional layer struc-
ture of conventional U-shaped network. Dense connections 
establish multiple connections that span distant front and back 
layers, combining both long and short connection strategies. 
In recent years, many researchers have introduced dense con-
nection mechanisms in U-Net. For instance, Li et al. combined 
U-Net and dense skip connections in the nested segmenta-
tion network (attention-based Nested U-Net, ANU-Net) to 
obtain full-resolution feature maps at different semantic levels. 
Numerous experiments indicate that adding dense connection 
modules can enhance feature fusion.

3.4.  Decoder

The decoding section introduces the Cascade Upsampler (CUP), 
which consists of multiple upsampling blocks and multi-level 
skip connections for decoding hidden features and obtaining 
the final segmentation mask. Upon reconstructing the hidden 

feature sequence into H
P

W
P

D´ ´ , the complete resolution resto-

ration of H
P

W
P

D´ ´  to H × W is accomplished by cascading mul-

tiple upsampling blocks and incorporating skip connections. 
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Each upsampling block is sequentially composed of feature map 
concatenation, convolution functions, and ReLU activation func-
tions, with the goal of restoring the full resolution of H × W.

4.  EXPERIMENTS AND RESULTS

4.1.  Experimental Setup

The experiment is conducted on a server environment with an 
NVIDIA RTX 3090 GPU (24GB), Python 3.8, PyTorch 1.11.0, and 
CUDA 11.3. To expedite the training process, adaptive learning 
rate and optimal gradient descent techniques are employed to 
ensure the fast and smooth decrease in loss. The input image 
size is configured as 512×512, with a patch size set to 16. For 
achieving full resolution, the decoder part utilizes four convo-
lution upsampling blocks in TransUnet. The framework adopts 
D-TransUnet and incorporated pre-trained weights from ViT 
trained on the ImageNet dataset. Regarding hyperparameter 
settings, the training spans 50 epochs, the initial learning rate is 
set at 1E-4, and the batch size is 8.

Breast cancer tumor lesions are categorized as either benign 
or malignant. Benign tumor ultrasound images typically fea-
ture relatively smooth lesion areas with a relatively regular 
distribution of semantic features. In contrast, malignant tumor 
ultrasound images often exhibit irregular lesion distributions 
characterized by fuzzy boundaries and uneven brightness. For 
achieving accurate segmentation between benign and malig-
nant tumors, it is vital to consider the different boundaries fea-
ture. Hence, this study employs the Dice loss function to refine 
the segmentation results for lesions with fuzzy boundaries, with 
the goal of improving accuracy and predictive performance. The 
specific form of the Dice loss function is as follows:

	     L
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pix pred pix true
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where ypred represents the predicted pixel probability values, 
and ytrue is the actual label values. The Dice coefficient ranges 
from 0 to 1, with higher values indicating more accurate  
predictions.

4.2.  Dataset

The paper leverages the BUSI dataset (Breast Ultrasound 
Images), which was compiled by Al-Dhabyani W in 2020 [29]. 
This publicly available dataset consists of 780 breast ultrasound 
images from females aged 25 to 75 years, with an average image 
size of 500×500 pixels. Among these images, there are 133 
normal images without lesions, 437 images with benign lesions, 
and 210 images with malignant lesions. It’s worth noting that 
some benign and malignant samples may contain two or more 
lesions.

To evaluate the network’s performance, this experiment 
exclusively utilizes samples with benign and malignant data. 
The dataset is partitioned into training and testing sets in a 17:3 
ratio. The training set, which undergoes data augmentation 
techniques such as rotation, mirroring, and brightness enhance-
ment, is further split into a training subset and a validation 
subset in a 5:1 ratio. The final dataset comprises 4199 images in 
the training set, 734 images in the validation set, and 98 images 
in the test set.

4.3.  Evaluation Metrics

To evaluate the segmentation performance of the model, we 
compare the performance of segmentation in breast ultrasound 
research by using Accuracy (Acc), Precision (Pre), Recall, balanced 
F-score, Dice Similarity Coefficient (Dice), Mean Intersection over 
Union (mIoU), and Hausdorff distance (HD95). They are defined 
in Eqs. (2)–(8).
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The definition of correctly segmented lesion areas is termed 
True Positive (TP), correctly segmented normal tissue regions are 
termed True Negative (TN), normal tissue regions segmented as 
lesion areas are defined as False Positive (FP), and lesion areas 
segmented as normal regions are defined as False Negative (FN). 
Here, N represents the total number of classes, and d (a, b) rep-
resents the Euclidean distance between points a and b.

4.4.  Results

D-TransUNet is a novel model based on TransUNet that intro-
duces dense connections to the bottom layer of the original net-
work. This effectively increases feature reuse, leading to improve 
the segmentation accuracy for ultrasound images. To demon-
strate the reliability of the proposed model, six groups of exper-
iments are compared with those of U-Net, U-Net++, Attention 
U-Net, and Swin-UNet. As depicted in Figure 4, the segmenta-
tion results of D-TransUNet are significantly more accurate than 
those of the other models. Particularly, D-TransUNet show supe-
riority in capturing boundary information of the lesion area, 
closely aligning with the ground truth. This observation sug-
gests that the proposed D-TransUNet enables extract efficient 
features from multiple scales and levels, enhancing the ability of 
boundary perception, and capturing more details information 
of the lesion area.

The quantitative results of the model are presented in 
Table 2. As observed from the table, the Pre, F1-score, mIoU, 
and Dice coefficients of D-TransUNet excess those of other 
methods (including U-Net, U-Net++, Attention U-Net, Swin-
UNet, and TransUNet). Hausdorff Distance (HD95) measures 
the maximum distance between the boundary generated by 
segmentation and the true subset of the actual tumor area. The 
evaluation index of proposed method reaches 23.3299 lower 
than other results. This indicates that D-TransUNet is closer to 
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the ground truth in overall segmentation performance than 
other models and can more accurately match the overlap 
between the tumor area and the ground truth. Additionally, the 
performances of D-TransUNet are superior on the details and 
boundaries of the tumor area to other approaches. Concretely, 
the evaluation indicators of Acc, Pre, Recall, F1-score, mIOU, 
and Dice respectively are 0.9621, 0.9062, 0.9073, 0.9033, 
0.8403, and 0.8934, which is 1.2%, 2.42%, 5.58%, 4.63%, 7.73%, 
and 6.12% higher than TransUNet. The demonstrates that the 
dense connections can effectively improve the performance of 
breast tumor segmentation of TransUNet. In brief, relying on 
the advantage of capturing the shape and boundary of the 
tumor, D-TransUNet can provide more accurate segmentation 
results, holding potential clinical value for tasks such as medi-
cal image analysis and pathological diagnosis.

According to the aforementioned analysis, the segmenta-
tion performance of D-TransUNet is notably closer to the ground 
truth. It is evident that D-TransUNet is proven to be feasible, 
allowing it more effectively focus on the tumor area through 
integrating the main features from different lays.

5.  CONCLUSION

This paper investigated the limitations of transformer method 
and a comprehensive evaluation of the most representa-
tive tumor segmentation approaches for breast ultrasound. 
And then a breast tumor ultrasound image segmentation 
method based on TransUNet is proposed. The model called 

D-TransUNet is improved by introducing dense connections to 
avoid the disappearance of gradient caused by deep network 
architecture. The model achieves deep feature fusion by input-
ting feature maps into dense blocks. The experimental results 
on the BUSI dataset also showcase the proposed method can 
realize the analysis of actual complex breast tumor ultrasound 
image and lay the foundation for extending its application to 
practical scenarios.
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