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ABSTRACT

Radiomics enables high-throughput extraction of information from images, including features not 
easily visible or quantifiable to the clinician, and analyzes them to yield visual quantitative parameters. 
Immunotherapy, an emerging treatment for lung cancer, has significantly altered the traditional 
treatment paradigm due to its exceptional therapeutic effects. However, the absence of objective 
and precise tools for evaluating efficacy and adverse events hampers the comprehensive scientific 
assessment of immunotherapy’s benefits and risks. Despite being in its nascent stages, numerous 
studies have demonstrated the utility of radiomics in early diagnosis, prognosis prediction, and 
guidance for personalized lung cancer treatment. This review summarizes the progress of radiomics 
in evaluating the efficacy and adverse effects of immunotherapy for non-small cell lung cancer, 
aiming to maximize its efficacy and minimize its risks, and discusses its clinical significance, future 
goals, and challenges.
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1.  INTRODUCTION
As per the Global Cancer Statistics 2020, lung cancer, with an 
estimated 2.2 million new cases and 1.8 million deaths, was 
the second most common cancer diagnosed and the leading 
cause of cancer mortality [1]. The high incidence and mortality 
rates of lung cancer thus contribute to a great disease burden. 
The two primary types of lung cancer are non-small cell lung 
cancer (NSCLC, 85%) and small cell lung cancer (SCLC, 15%) [2]. 
Traditional treatment modalities for NSCLC include surgery, che-
motherapy, targeted therapy, and radiotherapy [3]. Recently, 
immune checkpoint inhibitors (ICIs), particularly anti-pro-
grammed cell death receptor-1 (PD-1)/programmed death 
ligand 1 (PD-L1) antibodies, have revolutionized advanced 
NSCLC treatment due to their significant impact on improving 
patient prognosis [4,5]. In the KEYNOTE-024 trial (NCT02142738), 
305 advanced NSCLC patients were assigned to either the PD-1 
inhibitor Pembrolizumab group or the chemotherapy group for 
treatment. The Pembrolizumab group had a significantly longer 
median progression-free survival (PFS) than the chemotherapy 
group (10.3 months vs 6.0 months) [6]. In the phase III PACIFIC 
trial (NCT02125461), 476 patients treated with the PD-L1 inhib-
itor Duvalumab had a median PFS of 16.8 months, compared to 

5.6 months in the placebo group of 237 patients [7]. Based on 
these findings, the U.S. Food and Drug Administration (FDA) has 
approved ICIs, including Pembrolizumab and Duvalumab, for 
the treatment of advanced NSCLC.

The primary biomarkers for predicting the efficacy of 
NSCLC ICIs include PD-1/PD-L1, tumour mutation burden 
(TMB), and microsatellite instability (MSI)/mismatch repair 
(MMR) [8]. International mainstream guidelines suggest that 
stage IV NSCLC patients with driver gene-negative can bene-
fit from single-agent immunotherapy when the PD-L1 TPS is 
≥50% (Class IA evidence). The latest NCCN NSCLC guideline 
identifies TMB as a biomarker to guide NSCLC treatment with 
ICIs [9]. Additionally, microsatellite instability-high (MSI-H) is 
the first FDA-approved screening marker for pan-tumour ICIs. 
However, numerous challenges persist, including lengthy test-
ing periods, high costs, inconsistent standards, low success 
rates, undefined thresholds, and even controversy over blood 
and tissue samples. Moreover, with an incidence of less than 
5% in lung cancer, MSI-H could potentially serve as a predictor 
of immunotherapy efficacy [10]. The most common immune- 
related adverse events (irAEs) in NSCLC patients primarily 
affect the skin, colon, endocrine organs, liver, and lungs [11].  
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Biomarkers such as CD177, CEACAM1, immunoglobulin genes, 
baseline levels of interleukin-6, and sCTLA-4 can predict the 
occurrence of cellular toxic T-lymphocyte-associated protein 
4 (CTLA-4) inhibitor-associated irAEs in melanoma. However, 
only a few biomarkers are available for predicting irAEs in 
NSCLC patients, and even fewer for predicting PD-1/PD-L1 
inhibitor-associated irAEs.

Radiomics, an emerging field in nuclear medicine and general 
medical imaging, lacks a rigorous definition. Generally, it refers 
to the non-invasive prediction of tumor behavior by extracting 
quantitative, reliable, and reproducible information from diag-
nostic images, particularly complex patterns difficult for human 
eyes to identify [12,13]. Unlike simple imaging, radiomic features 
correlate with genomic data and capture tumor phenotypic 
features, providing information about tumor heterogeneity 
to enhance survival prediction accuracy and facilitate patient 
stratification. Currently, the lack of objective and precise tools 
to evaluate the efficacy and adverse events of immunotherapy 
makes it challenging to accurately identify the optimal patients 
for immunotherapy. Therefore, the rapid development and 
improvement of radiomics is urgently needed to address these 
complex issues. This review summarizes the research progress of 
radiomics in assessing the efficacy and adverse events of immu-
notherapy for non-small cell lung cancer, aiming to promote the 
application of precision tumor immunotherapy.

2.  ASSESSMENT OF EFFICACY

2.1. � Relationship between Radiomics and  
Immunotherapy-Related Markers

Driver gene-negative lung cancer patients cannot benefit from 
targeted therapy, necessitating the exploration of new therapeu-
tic strategies. Since the 1990s, the establishment of lung cancer 
immunotherapy, primarily based on immune checkpoint inhib-
itors (ICIs), has been gradual [14]. ICIs eliminate tumour cells by 
inhibiting immune checkpoints on their surface and reactivating 
the immune system's ability to recognize these cells. This pro-
cess results in a sustained anti-tumour response and enhances 
patient survival rates. However, as immunotherapy is not suit-
able for all patients, there is an urgent need for biomarkers to 
evaluate treatment efficacy beforehand. Currently, biomarkers 
frequently used in clinical practice encompass PD-L1, TMB, and 
tumour infiltrating lymphocytes (TILs).

2.1.1.  PD-1/PD-L1

Immunohistochemistry (IHC) and whole-genome sequenc-
ing serve as primary methods for PD-1 detection. However, 
tumour heterogeneity and sampling errors may undermine 
assay accuracy due to tissue sample limitations [15]. CT radio-
mics, showing promising potential for non-invasive evaluation 
of immunotherapy efficacy, has been employed to determine 
PD-1 expression status. Tian Q et al. developed a radiomic model 
and juxtaposed it with a clinical model to evaluate PD-1 expres-
sion efficacy in NSCLC [16]. The study encompassed 143 NSCLC 
patients (30 PD-1 positive and 113 negative), divided into a 
training set (n = 101) and a validation set (n = 42). Subsequently, 
a clinical model was formulated based on two factors—prealbu-
min and cysteine protease inhibitor C—closely associated with 
PD-1 expression. A radiomic model was constructed by extract-
ing and filtering CT-based imaging features. Additionally, a CT 

nomogram was established by integrating clinical factors and 
radiomic features. The results indicated that radiomics could 
more accurately assess NSCLC PD-1 expression (AUC = 0.89 
in the training set and AUC = 0.81 in the validation set). The 
radiomic nomogram (AUC = 0.92 in the training set and AUC = 
0.86 in the validation set) demonstrated superior performance 
(P < 0.05). This study confirmed the high accuracy of CT radio-
mics and the radiomic nomogram in non-invasively evaluating 
PD-1 status, aiding in further estimation of immunotherapy 
effects. However, additional potential clinical factors, not lim-
ited to prealbumin and cysteine protease inhibitor C, should be 
meticulously considered. Furthermore, a larger validation set is 
required to verify the actual performance.

2.1.2.  TMB

Balard et al. demonstrated that TMB outperformed PD-L1 in pre-
dicting the efficacy of ICIs. However, the widespread adoption 
of TMB assay was hindered by the invasive nature of biopsy and 
the high cost associated with whole exome sequencing (WES) 
[17]. Wang et al. developed a support vector machine-based 
fusion-positive tumor prediction model to determine TMB 
status in early-stage lung adenocarcinoma (LUAD) [18]. They 
included 61 pulmonary nodules (PNs) from 51 LUAD patients 
with postoperative diagnoses, which were divided into a train-
ing cohort (41 PNs) and a test cohort (20 PNs). 718 quantitative 
three-dimensional radiological features were extracted from 
the segmented volume of each PNs and 78 clinical and patho-
logical features were obtained from the medical record. In the 
training and test sets, the AUC values for predicting TMB status 
using radiomic features were 0.707 and 0.606, respectively. 
However, the combination of radiomics with clinical informa-
tion showed improved prediction performance, achieving AUC 
values of 0.775 and 0.671, respectively. This demonstrates the 
feasibility and effectiveness of using radiomics to predict TMB. 
Guan et al. retrieved CT images of 37 lung cancer patients from 
The Cancer Imaging Database (TCIA), extracted radiomic fea-
tures using medical image processing software (3D Slicer), and 
subsequently identified 9 imaging features associated with TMB 
using LASSO regression [19]. Lastly, a prediction model for TMB 
was developed using logistic regression, considering 3 imaging 
features. Interestingly, the AUC of the CT model reached 0.882, 
suggesting that the model based on CT radiomic features was 
highly effective in predicting the TMB status of squamous lung 
cancer. In conclusion, TMB prediction models based on CT radio-
mic features demonstrate strong performance, particularly in 
predicting the TMB status of squamous lung cancer at present. 
By comparing the model development process, it becomes evi-
dent that standardizing image processing, such as utilizing pro-
fessional medical image processing software, as well as ensuring 
the rationality of radiomic feature selection, including the appli-
cation of appropriate regression methods, both contribute sig-
nificantly to enhancing prediction accuracy.

2.1.3.  TILs

The killing effect of tumour-infiltrating lymphocytes (TILs) on 
tumour cells in the tumour microenvironment remains con-
troversial in terms of its relationship with patient prognosis. 
Currently, radiomics can partially predict the infiltration of 
TILs. Khorrami et al. divided 139 NSCLC patients from two insti-
tutions into a training group (n = 50) and two independent 
validation groups (n = 62, n = 27) [20]. The researchers used 
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machine learning to compare the differences (“delta”) in the 
radiomic texture (DelRADx) of the tumour nodes before and 
after 2–3 cycles of ICIs treatment. DelRADx demonstrated excel-
lent performance in predicting the efficacy of immunotherapy, 
achieving AUC values of 0.88, 0.85, and 0.81 in the training and 
validation sets, respectively. Additionally, this research dis-
covered a strong association between concurrently measured 
radiological risk scores (DRS) and overall survival (OS) (HR [95% 
CI] = 1.64 [1.22, 2.21]; P = 0.0011). It is worth noting that the 
radiomic features surrounding the tumour exhibited an asso-
ciation with the density of TILs observed in diagnostic biopsy 
samples. The research successfully demonstrated the accuracy 
of radiomic prediction in determining the level of TILs infiltra-
tion. However, the ability of TILs infiltration level to identify the 
immunotherapy response in NSCLC patients remains uncertain 
and requires further investigation.

2.2. � Predicting Immunotherapy Efficacy 
Based On Radiomics

Radiomics, through the use of data representation algorithms, 
can potentially identify disease characteristics that are challeng-
ing to discern and evaluate visually by extracting quantitative 
features from medical imagery. Based on imaging data from 
concluded clinical studies, radiomic biomarkers present promis-
ing development prospects in the field of immunotherapy.

Trebeschi and colleagues conducted a retrospective anal-
ysis of contrast-enhanced CT scans from 123 advanced NSCLC 
patients, encompassing 572 primary and metastatic lesions, 
prior to immunotherapy. They discovered that lesions respon-
sive to immunotherapy typically exhibited radiomic features 
with more heterogeneous morphological contours, including 
inhomogeneous density patterns and compact borders [21]. 
To evaluate the predictive power of radiomics for immuno-
therapy efficacy, they employed machine learning to develop 
a single radiomic biomarker. The biomarker demonstrated 
excellent performance in NSCLC cases with lung metastases 
(AUC = 0.83, P < 0.001) and lymph node metastases (AUC = 0.78,  
P < 0.001). Furthermore, the radiomic biomarker showed good 
performance in primary tumours (AUC = 0.79, P = 0.05), liver 
(AUC = 0.75, P = 0.13), and adrenal gland lesions (AUC = 0.70,  
P = 0.18), although it did not reach statistical significance due  
to the limited sample size. This study illustrated that even a 
single radiomic biomarker can facilitate the prediction of a 
patient's response to immunotherapy.

Yang and colleagues integrated radiomics, laboratory data, 
and baseline clinical data to construct a multi-omics deep  
learning model. This model, based on the Simple Temporal 
Attention (SimTA) module, aimed to predict the efficacy of 
anti-PD-1/PD-L1 monotherapy in patients with advanced NSCLC 
[22]. Cross-validation revealed that the prediction model effec-
tively discriminated between responders and non-responders, 
with an AUC of 0.80 (95% CI: 0.74–0.86). It was evident that the 
progression-free survival (PFS) and overall survival (OS) of the 
low-risk group were significantly longer than those of the high-
risk group. Similarly, Yang and colleagues amalgamated radio-
mic features from CT images with clinicopathological features 
to construct a radiomic nomogram model, aiming to predict 
the long-term clinical benefits of immune checkpoint inhib-
itors (ICIs). The results indicated that the AUC for the training 
and validation cohorts was 0.848 and 0.795, respectively, while 
the PFS for these cohorts was 0.749 and 0.791, respectively [23].  

In conclusion, the radiomic nomogram model, which combines 
radiomics and clinicopathological features, holds promise as a 
noninvasive biomarker for predicting immunotherapy efficacy. 
This has significant implications for guiding individualized treat-
ment in advanced NSCLC.

Numerous studies have established a close relationship 
between the status of intratumoural and peritumoural immune 
infiltration and the efficacy of immunotherapy [24–26]. Presently, 
three distinct immune phenotypes are accurately delineated: 
immune-inflamed, immune-excluded, and immune-desert. 
Immune-inflamed tumours, characterized by dense and func-
tional infiltration of CD8+ cells, tend to respond to immuno-
therapy. Sun and colleagues developed a predictive model that 
integrates contrast-enhanced CT images with RNA-seq genomic 
data, incorporating five radiomic features closely associated with 
CD8+ T cells. Conversely, immune-excluded and immune-desert 
tumours exhibit less responsiveness to immunotherapy, attrib-
utable to the absence of immune effector cell infiltration or the 
enrichment of immunosuppressive cells. The predictive model 
demonstrated a robust capability to forecast the gene expres-
sion profile of CD8+ T cells in the TCGA validation set, achieving 
an AUC value of 0.67 (95% CI: 0.57–0.77; P = 0.0019) [27]. The esti-
mation of CD8 T cell counts using this radiomic signature unde-
niably offers a novel approach for predicting clinical outcomes in 
patients undergoing immunotherapy.

3. � ASSESSMENT OF IMMUNE RELATED 
ADVERSE EVENTS

Immune-related adverse events (irAEs) are defined as adverse 
drug reactions of varying severity, caused by immune dysreg-
ulation, excluding non-specific infusion reactions observed in a 
series of immunotherapy clinical trials. Specifically, the immune 
mechanisms underlying irAEs encompass enhanced T-cell activ-
ity against antigens in tumours and normal tissues, increased 
levels of pre-existing autoantibodies, elevated inflammatory 
cytokine levels, and an amplified complement-mediated inflam-
matory response [28]. A comprehensive meta-analysis reported 
the incidence of irAEs to be approximately 83% for CTLA-4 
inhibitors, 72% for PD-1 inhibitors, and 60% for PD-L1 inhibi-
tors [29]. At present, specific irAEs are monitored clinically using 
conventional laboratory markers, including routine chemistry, 
myostatin clearance, thyroid function tests, and serum cortisol/
adrenocorticotropic hormone levels [30]. To enhance the safety 
of immunotherapy for lung cancer, the development of addi-
tional radiomic biomarkers for the diagnosis and prediction of 
irAEs is underway.

3.1. � Diagnosis and Prediction of ICIs- 
Associated Pneumonia

Off-target effects, resulting from immune system overactivation, 
can impact various organ systems and tissues [31]. Typically, 
the most common immune-related adverse events (irAEs) are 
dermal, gastrointestinal, and endocrine toxicities, while neuro-
logical, cardiac, and pulmonary toxicities are deemed poten-
tially lethal.

Colen et al. developed a predictive model for immune- 
checkpoint inhibitor (ICI)-associated pneumonia by extract-
ing radiomic features from chest CT scans. The model cor-
rectly identified two out of 32 patients treated with ICIs who 
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developed ICI-associated pneumonia [32]. Despite the limited 
size of the training sample, this model could be beneficial in 
stratifying patients at risk of developing pulmonary toxicity, 
thereby allowing timely adjustment of therapies to enhance 
the safety of ICIs. In a similar vein, Tohidinezhad et al. con-
structed a predictive model by extracting the most predictive 
radiomic features from pneumonia-associated CT images and 
implementing a 75-mm spherical region of interest. This model 
accurately diagnosed 10 out of 12 cases [33]. These findings 
suggest that radiomic biomarkers, when applied to CT imag-
ing, could aid clinicians in accurately identifying and diagnos-
ing ICI-associated pneumonia.

The Common Terminology Criteria for Adverse Events (CTCAE) 
classifies immune-related adverse events (irAEs) into grades 1 
through 5 based on severity. If severe irAEs (irSAEs) of grade 3 or 
higher occur, the administration of immune-checkpoint inhibi-
tors (ICIs) should be permanently halted. Consequently, there is 
an urgent need to develop biomarkers that can predict irSAEs, 
which could significantly reduce the mortality rate associated 
with immunotherapy. Mu et al. conducted a retrospective study 
involving 146 advanced non-small cell lung cancer (NSCLC) 
patients, generating a radiographic score (RS) from radiomic fea-
tures extracted from baseline PET, CT, and PET/CT fusion images 
[34]. They developed a nomogram model that combined the RS 
with the type and dosing schedule of ICIs to predict irSAEs in 
patients with advanced NSCLC. The model demonstrated signif-
icant predictive value, with area under the curve (AUC) values 
of 0.92 and 0.88 for the training and prospective validation 
cohorts, respectively. This underscores the substantial value of 
PET/CT images in predicting irSAEs.

3.2. � Diagnosis and Prediction of  
General irAEs

The use of radiologic methods to detect immune-check-
point inhibitor (ICI)-related toxicity is gaining clinical consen-
sus, despite the lack of reported specific radiomic features of 
immune-related adverse events (irAEs). A recent study identi-
fied a correlation between general irAEs (primary and secondary 
adverse events) detected via 18F-FDG PET/CT and the efficacy 
of immunotherapy for certain cancers. This finding could illumi-
nate the potential of radiomics in predicting other types of irAEs 
in non-small cell lung cancer (NSCLC) patients. Nobashi et al. 
found that the onset of ICI-related thyroiditis, detected through 
early 18F-FDG-PET/CT, was associated with clinical improve-
ment in patients with renal cell carcinoma, malignant mela-
noma, and lymphoma at a 12-month follow-up [35]. In a similar 
study, Sachpekidis et al. conducted 18F-FDG-PET/CT on 16 met-
astatic melanoma patients undergoing ibritumomab treatment. 
They found that seven patients developed at least one type of 
irAE, most commonly colitis and arthritis. Notably, these seven 
patients had significantly longer progression-free survival (PFS) 
than those without irAEs (P = 0.036) [36]. These findings suggest 
that certain irAEs may be linked to the efficacy of immunother-
apy in NSCLC patients. Further exploration of these irAEs using 
advanced radiomic methods could provide valuable insights.

4.  DISCUSSION

Radiomics, a current research focal point, has demonstrated 
potential in non-invasively evaluating certain adverse events 

and the efficacy of immunotherapy treatments in lung cancer 
patients by predicting the status of related markers. Based on 
existing research and forward-thinking, we foresee three pri-
mary medical applications.

1.		  Early Detection and Diagnosis: By integrating radiomics 
with artificial intelligence and machine learning algo-
rithms, we can potentially enhance early disease detection 
and diagnosis, such as cancer, by identifying subtle tissue 
changes that may be imperceptible to the human eye.

2.		  Personalized Medicine: Radiomics can contribute to the 
development of personalized treatment plans by offering 
detailed insights into tumor heterogeneity without invasive 
procedures.

3.		  Treatment Response and Prognosis: Radiomics can be uti-
lized to predict patient outcomes and monitor treatment 
responses, aiding in treatment plan adjustments and 
enhancing patient outcomes.

However, we also recognize several challenges and future 
research directions.

1.		  Standardization: There is a pressing need for standardiza-
tion in the extraction and analysis of radiomic features to 
ensure result reproducibility and comparability.

2.		  Integration with Other Omics: Merging radiomics with other 
omics data, such as genomics, proteomics, and metabolom-
ics, can offer a more holistic understanding of diseases.

3.		  Clinical Validation: More clinical studies are required to vali-
date the practical utility of radiomics.

4.		  Improving Algorithms: The development of advanced algo-
rithms is necessary to enhance the accuracy and stability of 
models for feature extraction and analysis.

5.		  Data Sharing and Collaboration: Promoting data sharing 
and collaboration can aid in the development of more 
robust and generalizable radiomic models.

5.  CONCLUSION

This review highlights recent advancements in radiomics for 
evaluating the efficacy and adverse effects of immunother-
apy in non-small cell lung cancer. However, several limitations 
persist. These include the absence of multicentre prospec-
tive radiomic studies to guide clinical practice, due to a lack 
of standardized imaging research methods. Furthermore, the 
stability and accuracy of radiomic features are influenced by 
factors such as image reconstruction algorithms, preprocess-
ing methods, transmission protocols, inter-observer variation, 
and feature extraction algorithms. Currently, radiomics is in a 
phase of ongoing development and represents a future trend 
in precision oncology diagnosis and treatment technology. 
Addressing these challenges is crucial for achieving clinical 
transformation. Consequently, further research is required to 
resolve the issues discussed and to validate these findings.
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