
RESEARCH ARTICLE
Mutational Analysis and Deep Learning Classification  
of Uterine and Cervical Cancers
Paul Gomez*

NanoBioTek, LLC, 9985 Lancashire Dr, FL 32219, USA

ARTICLE DATA
Article History

Received 11 October 2022
Revised 06 December 2022
Accepted 14 December 2022

Keywords
Uterine cancer
Artificial Intelligence (AI)
Machine Learning (ML)
Deep Learning (DL)
TensorFlow

ABSTRACT

We analyzed tumor mutations of 7 uterine and 2 cervical cancers with the goal of developing a Deep 
Learning (DL) software tool that can automatically classify tumors based on their somatic mutations. 
The data were obtained from the AACR Genie Project, that has a collection of more than 120,000 tumor 
samples for more than 750 cancer types. We performed a thorough analysis of the mutational data of 
tumors of the uterus and uterine cervix, selecting tumors with 3 or more mutations and cancer types 
with more than 15 cases. For each cancer type we then selected the top 12 most mutated genes among 
their neoplasms. In the introduction section we summarize our analysis of these nine diseases and in the 
methods section we present a convolutional neural network (CNN) that yields an overall classification 
accuracy of 94.3% and 89.2% on the train and test datasets, respectively. We hope this tool can be 
added to the existing arsenal of histological and immunohistochemical techniques in cases when a 
precise diagnosis cannot be clearly determined. Each cancer type has a unique somatic mutational 
profile that can be used to disambiguate two candidate malignancies with similar histologic features.
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INTRODUCTION

Uterine Cancers

This year, 2022, approximately 66,000 patients in the United 
States are estimated to be diagnosed with uterine or endome-
trial cancer [1]. The number of uterine cancer patients worldwide 
was 417,000 in 2020. Uterine cancer is the fourth most common 
cancer for women in the United States. It is estimated that in 
2022, approximately 12,550 patients will die of uterine cancer 
[1], making it the sixth most deadly cancer among women in the 
United States.

More than 90% of uterine cancers occur in the endome-
trium. Endometrial cancers are classified as Type I (endome-
trioid subtype) or Type II (non-endometrioid subtype) [2,3]. 
The differences between the two groups lie on precursor type, 
unopposed estrogen presence, menopausal status, myometrial 
invasion, histologic subtypes, and genetic mutations [4,5].

Type I neoplasms of the uterus are low grade tumors that 
start with a precursor lesion called atypical hyperplasia (AH) [6]
[7] that develops in premenopausal patients in the presence 
of unopposed estrogen, that is, in the absence of progester-
one. Endometrial hyperplasia is the proliferation of glands 
of irregular size and shape with a high gland-to-stroma ratio 
[8,9]. Endometrial hyperplasia can be cytological atypical or 
non-atypical [10,11]. The presence or absence of nuclear atypia 

is the main feature to determine if a carcinoma is of Type I. AH 
lesions show none or low myometrial invasion and thus, they are 
confined to the endometrium. The most common carcinoma of 
this type is Endometrial Carcinoma (UCEC) [12,13] (Table 1 and 
Figure 1).

At the molecular level, mutations of gene PTEN have been 
identified as an initial driver of tumorigenesis in all hyperplasias 
and endometrioid neoplasms [14–17]. PTEN is a tumor suppres-
sor gene involved in a signal transduction path that regulates 
cell growth and apoptosis [18,19]. On Table 2, it can be seen that 
all uterine cancers except Uterine Leiomyosarcoma (ULMS) have 
PTEN mutated. ULMS is a sarcoma that does not fall in any of the 
Type I or Type II categories. ULMS is a rare cancer of the uterus 
[20,21] that was included in this study due to its unique muta-
tional pattern having 3 unique mutated genes. These ULMS 
unique genes, namely, DAXX, ERBB4, and KDR, are not present 
on the mutational profiles of the other cancers on Table 2.

Tumor suppressor gene TP53 is also mutated in all endome-
trial cancers at different rates (Table 2) [22–24], but mainly on 
grade 3 tumors and not on grade 1, indicating that TP53 is impli-
cated on tumor progression but not on tumor initiation as is the 
case of PTEN.

Type II neoplasms develop even in the absence of unop-
posed estrogen. These tumors begin with a precursor lesion 
called Endometrial Intraepithelial Carcinoma (EIC) [25,26]. The 
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Figure 1 | Diagram showing the relative locations of neoplasms 
of the uterus and uterine cervix.

Table 1 | Uterine and cervical cancers
Organ Code Disease name Uterine type Cancer type Tissue/Histologic subtype

Cervix CESC Cervical Squamous Cell Carcinoma Carcinoma Squamous cell

Cervix ECAD Endocervical Adenocarcinoma Adenocarcinoma Glandular epithelium

Uterus UCCC Uterine Clear Cell Carcinoma Type II Carcinoma Clear cell

Uterus UCEC Endometrial Carcinoma Type I Carcinoma Endometrium

Uterus UCS Uterine Carcinosarcoma/Uterine  
Malignant Mixed Müllerian Tumor

Type II Sarcoma Myometrium, müllerian

Uterus UEC Uterine Endometrioid 
Carcinoma

Type I Carcinoma Endometriod

Uterus ULMS Uterine Leiomyosarcoma Sarcoma Myometrial

Uterus UMEC Uterine Mixed Endometrial Carcinoma Type II Carcinoma Mixed subtypes

Uterus USC Uterine Serous Carcinoma/Uterine  
Papillary Serous Carcinoma

Type II Carcinoma Serous

most common cancer of this type is Uterine Serous Carcinoma 
(USC) [27,28], previously named Uterine Papillary Serous 
Carcinoma [29,30] (Table 1). Patients diagnosed with Type II 
uterine cancers are usually postmenopausal. The correlation 
between EIC and USC is the overexpression of mutated p53 
protein on both. The gene responsible for the expression of p53 
is TP53 (Table 2). TP53 is a tumor suppressor gene known for 
being the most frequently mutated gene in all kinds of cancers 
[31,32]. In our study, only one cancer type, Cervical Squamous 
Cell Carcinoma (CESC) does not have TP53 in its list of 12 most 
mutated genes (Table 2). Type II endometrial cancers usually 
invade the myometrium (Figure 1). The depth of myometrial 
invasion, grossly measured as the inner-third, middle-third and 
outer-third, is associated with metastasis. Different percentages 
of lymph node and pelvic node metastasis are associated with 
tumor grade and myometrial invasion depth [33,34].

In Type II uterine cancers, tumor suppressor gene TP53 is 
mutated in precursor lesions (EIC), which indicates that TP53 
is mutated early and thus, is a key driver in the initiation of 
tumorigenesis.

Neoplasms of Type II are Uterine Clear Cell Carcinoma (UCCC) 
[35,36], Uterine Carcinosarcoma (UCS) [37,38], Uterine Serous 
Carcinoma (USC) [39,40], Uterine Mixed Endometrial Carcinoma 
(UMEC) [41,42], and others that were not part of this research 
due to the small number of cases available.

CERVICAL CANCERS

There are two main cancers of the uterine cervix: Cervical 
Squamous Cell Carcinoma (CESC) [43,44], and Endocervical 
Adenocarcinoma (ECAD) [45,46]. Their mutational profiles are 
quite different as shown on Table 2. ECAD is the neoplasia on 
Table 2 with the highest number of unique mutated genes, 
namely, APC, ERBB2, GNAS, SMAD4, and STK11. The vast majority 
of malignancies of the cervix are of the squamous cell carcinoma 
type (96%) and the rest are glandular lesions, or endocervical ade-
nocarcinomas (4%). In most cases (90% or more) these neoplasms 
begin with a human papillomavirus (HPV) infection [47,48]. HPV 
has more than 130 known strains and the particular strains associ-
ated with cervical cancers are HPV16 and HPV18 [49,50].

Squamous Cell Carcinoma (CESC) of the uterine cervix starts 
in a region of the exocervix called the transformation zone (TZ) 
(Figure 1). The endocervical canal is lined by two distinctive 
types of epithelium, squamous and glandular (columnar). The 
site where the two types of epithelium meet is known as the 
squamous-columnar junction (SCJ). The SCJ is located at birth 
in the endocervical canal. This junction moves to the external 
surface of the cervix facing the vagina after puberty. The zone 
between the original SCJ and the new SCJ is known as the trans-
formation zone (TZ) where most malignant squamous cell neo-
plasms develop [51,52]. At the molecular level, some studies 
show that the most frequently mutated gene is PI3KCA (27.1% 
of all cases) [53,54] which is in close agreement with our findings 
(35.6%) as shown on Table 2.

Cervical adenocarcinoma (ECAD) arises and develops in the 
glandular (columnar) epithelium of the endocervical canal [55]. 
ECAD in situ, also known as “the usual type” comprises 80% of 
all adenocarcinoma cases. Other subtypes are: mucinous adeno-
carcinoma [56], clear cell adenocarcinoma [57], adenosquamous 
carcinoma [58], and others. These other malignancies were 
not studied in this research due to the small number of cases 
reported. As reported by other studies, we found that PI3KCA 
and KRAS are the most highly mutated genes on ECAD, 35.9% 
and 20.5% respectively [59,60] (Table 2).



P. Gomez18

Table 2 | Gene mutations rates by cancer type chart
GENE CESC ECAD UCCC UCEC UCS UEC ULMS UMEC USC

AKT1 0.08

APC 0.09

ARID1A 0.14 0.19 0.27 0.1 0.46 0.05 0.3 0.09

ATM 0.09 0.15 0.06

ATRX 0.39 0.05

BAP1 0.09

BCOR 0.13

BRCA2 0.05

CDKN2A 0.08

CREBBP 0.06

CTCF 0.11

CTNNB1 0.16 0.34

DAXX 0.06

EP300 0.1 0.1 0.06

ERBB2 0.15

ERBB3 0.09 0.08 0.06 0.06 0.05

ERBB4 0.05

FAT1 0.08 0.08 0.05 0.05

FBXW7 0.14 0.16 0.08 0.22 0.08 0.22 0.23

FGFR2 0.08 0.11

GNAS 0.09

HLA-B 0.07

KDR 0.05

KMT2C 0.1 0.08 0.05

KMT2D 0.22 0.15 0.09 0.1 0.07 0.07 0.05

KRAS 0.21 0.17 0.12 0.26 0.16 0.06

MED12 0.09 0.08 0.19 0.05

MUTYH 0.05

MYC 0.05

NF1 0.06

NFE2L2 0.08 0.09

NOTCH1 0.06 0.05 0.06

NOTCH3 0.05

PIK3R1 0.15 0.24 0.16 0.32 0.22 0.16

PPP2R1A 0.18 0.15 0.17 0.19 0.31

PTEN 0.1 0.11 0.37 0.17 0.7 0.05 0.22 0.07

RB1 0.07 0.07 0.17

ROS1 0.06

SMAD4 0.1

SPOP 0.15 0.06

STK11 0.1

TERT 0.1 0.1

PIK3CA 0.36 0.36 0.36 0.37 0.35 0.49 0.47 0.43

TP53 0.15 0.53 0.52 0.89 0.17 0.72 0.84 0.96

METHODS
Tumor mutational data were obtained from the AACR Project 
GENIE [61] which has a publicly available set of files that can 
be downloaded from their website. The full dataset for all 
cancer types was downloaded and imported into a local SQL 
Server database for further processing. We explored the data 

for uterine and cervical cancers and based on the number of 
cases available, we chose the nine cancers shown on Table 1. 
The nomenclature used to label the different cancer types was 
taken from project OncoTree [62].

We first determined the 12 most mutated genes for each 
cancer type (Table 2) along with the percentage of tumors that 
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show that mutation. Additional filtering was done, looking 
for tumors with more than 3 mutations on the list of 12 most 
mutated genes, or at least two mutations, one of which was a 
unique gene for the corresponding disease. The next step was 
to find a feature that could be used to train the convolutional 
neural network (CNN). We selected two features: mutation vari-
ant type (Table 3) and mutation variant classification (Table 4) 
[63]. We counted the actual number of variant types and classi-
fications, calculated the relative percentage of the population, 
and manually assigned a score that was suitable to train the 
CNN. The base score is equivalent to the percentage of cases of 
each variant classification. However, some variant classifications 
percentages are very small (under 3%), and since the actual per-
centage magnitude is not relevant for pattern recognition (the 
score is just a symbol in this case), it was decided to make the 
score higher than its corresponding percentage and compara-
ble to the other scores, to avoid the training process having to 
deal with large variations between the different samples, that 
would make the process take longer to minimize the error.

Artificial Intelligence (AI), and more specifically, Deep 
Learning (DL), has been used during the past three decades to 
solve problems in several areas such as engineering, science, 
finance, business, social sciences, and others. The solutions are 
of different kinds: from estimation and prediction to classifica-
tion, from pattern recognition to natural language processing 

Figure 2 | Convolutional neural network.

Table 3 | Mutation variant types showing the numbers of mutations found in the data sets
ID Variant type Description Count PCT% Score

1 SNP Single nucleotide polymorphism. A substitution in 
one nucleotide

231090 83.52 0.84

2 DEL Deletion. The removal of nucleotides 30067 10.87 0.44

3 INS Insertion. The addition of nucleotides 12704 4.59 0.36

4 DNP Double nucleotide polymorphism. A substitution in 
two consecutive nucleotides

2340 0.85 0.11

5 ONP Oligo-nucleotide polymorphism. A substitution in 
more than three consecutive nucleotides

486 0.18 0.11

Table 4 | Mutation classifications
ID Variant classification Count PCT% Score

1 Missense_Mutation 185939 67.2 0.67

2 Nonsense_Mutation 24966 9.02 0.46

3 Frame_Shift_Del 18554 6.71 0.38

4 Splice_Site 9252 3.34 0.23

5 Frame_Shift_Ins 8851 3.2 0.23

6 In_Frame_Del 6626 2.39 0.23

7 Splice_Region 6211 2.24 0.23

8 Intron 5629 2.03 0.23

9 5Flank 3405 1.23 0.13

10 Silent 3268 1.18 0.13

11 In_Frame_Ins 2381 0.86 0.13

12 Translation_Start_Site 369 0.13 0.13

13 3UTR 323 0.12 0.13

14 5UTR 292 0.11 0.13

15 3Flank 246 0.09 0.13

16 RNA 199 0.07 0.13

17 Nonstop_Mutation 176 0.06 0.13

(NLP). Cancer research is not the exception and several projects 
have been developed in this area [64–67].

In this research, a Convolutional Neural Network (CNN) clas-
sifier [68] was chosen to classify tumors of gynecological origin. 
The solution was implemented with a program written in the 
Python language, making use of the TensorFlow-Keras librar-
ies. The total number of genes was 42 as shown on Table 2, on 
which, at the bottom, there are 2 genes that were excluded 
because they are highly mutated in all neoplasias but one, and 
thus, do not provide any disambiguation information. Those are, 
oncogene PIK3CA, and tumor suppressor TP53.

For each gene, its variant type and its variant classification 
scores were used. Since there are 42 genes, 84 data points 
need to be presented to the CNN input layer. We converted the 
input 1D vector to a 2D matrix by adding 6 zero-valued dum-
mies at the end. That way, the 90 data points were converted 
to a 9 by 10 matrix that is fed into the Keras Conv2D input 
layer. The complete design of the CNN is shown on Figure 2.  
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Figure 3 | Training evolution.

CONCLUSION

Accurate diagnosis of specific cancer type is very important in 
determining the most adequate treatment plan in particular 
each case. In recent years it has been emphasized the relevance 
of personalized medicine and precision oncology to more effec-
tively treat cancer. This research is a contribution to this med-
ical field. Some cancer types of the same organ have similar 
histological features that makes it difficult to arrive at a precise 
diagnosis. We succeeded in developing a neural network that is 
capable of accurately classifying tumors of the uterus and uter-
ine cervix based solely on the genetic somatic mutations found 
on the tumor samples. Each cancer type has a unique somatic 
mutational profile that can be used to disambiguate between 
two candidate malignancies with similar histologic characteris-
tics. The resulting overall accuracy that was achieved is above 
90%, which makes this proposed solution a promising tool that 
should be considered for use in the clinical setting.
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