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ABSTRACT
The purpose of this study is to develop a deep learning–based method that can automatically generate segmentations on cone-
beam computed tomography (CBCT) for head and neck online adaptive radiation therapy (ART), where expert-drawn contours
in planning CT (pCT) images serve as prior knowledge. Because of the many artifacts and truncations that characterize CBCT,
we propose to utilize a learning-based deformable image registration method and contour propagation to get updated contours
on CBCT. Our method takes CBCT and pCT as inputs, and it outputs a deformation vector field and synthetic CT (sCT) simul-
taneously by jointly training a CycleGAN model and 5-cascaded Voxelmorph model. The CycleGAN generates the sCT from
CBCT, while the 5-cascaded Voxelmorph warps the pCT to the sCT’s anatomy.We compared the segmentation results to Elastix,
Voxelmorph and 5-cascaded Voxelmorph models on 18 structures including target and organs-at-risk. Our proposed method
achieved an average Dice similarity coefficient of 0.83 ± 0.09 and an average 95% Hausdorff distance of 2.01 ± 1.81 mm. Our
method showed better accuracy than Voxelmorph and 5-cascaded Voxelmorph and comparable accuracy to Elastix, but with
much higher efficiency. The proposedmethod can rapidly and simultaneously generate sCT with correct CT numbers and prop-
agate contours from pCT to CBCT for online ART replanning.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Adaptive radiation therapy (ART) can improve the dosimetric qual-
ity of radiation therapy plans by altering the treatment plans based
on patient anatomical changes [1]. However, the time-consuming
parts of ART, including segmentation and re-planning,make online
ART difficult to implement in clinics. Recently, several commer-
cially available online ART systems have been developed: EthosTM
(Varian Inc., Palo Alto, USA), MRIdianTM (ViewRay Inc., Cleve-
land, OH, USA) andUnityTM (Elekta AB Inc., Stockholm, Sweden).
Ethos [2] is a cone-beam computed tomography (CBCT)-based
online ART platform that works with Halcyon Linac, while MRId-
ian [3] and Unity [4] are magnetic resonance imaging (MRI)-based
online ART platforms that work with MRI Linacs.

Even though MRI images have much better soft tissue contrast
than CBCT images, CBCT images are often still used in ART
because MRI’s magnetic fields make it unsuitable for patients with
metal implants, and MRI’s expense make it unsuitable for clinics
with value-based healthcare. As a tumor site that often has inter-
fractional anatomical changes during RT, head and neck (H&N)
cancer could benefit from CBCT-based online ART. A clinical
study of ART benefits for H&N patients showed that it significantly
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reduced the dose to the parotid gland for all 30 patients [5]. Another
study showed that target coverage for patients whose treatment
plans were adapted improved by up to 10.7% of the median dose
[6]. Thus, utilizing CBCT in an ART workflow can avoid the risk of
underdose to the tumor and overdose to organs-at-risk (OARs).

To use CBCT in an ART workflow, corrections must be made to
the CBCT. Compared to CT, CBCT has a lot of artifacts and inac-
curate Hounsfield units (HU) values. To calculate the dose accu-
rately on CBCT, HU values must be corrected, and artifacts must
be removed from the CBCT. Our previous work used CycleGAN,
a deep learning (DL)–based method, to convert CBCT to syn-
thetic CT (sCT) images that have CT’s HU values and fewer arti-
facts, and the dose distributions calculated on sCT showed a higher
gamma index pass rate than those calculated on CBCT [7]. DL can
generate sCT from CBCT for ART dose calculation more quickly,
easily and accurately than deformable image registration (DIR)
methods, because it doesn’t require paired data for training, it
enables rapid deployment of a trained mode, and it preserves the
CBCT’s anatomy.

Besides accurate dose calculation, another problem for using CBCT
in online ART is achieving accurate autosegmentation. Because of
the many artifacts and the axial truncation on CBCT images of
H&N sites, using DL methods directly to contour OARs and the
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target on CBCT images is very challenging. One study used Cycle-
GAN to convert CBCT to syntheticMRI images, then combined the
CBCT and syntheticMRI together to enhance the training of a DL–
based multi-organ autosegmentation model [8]. Most studies of
autosegmenting from CBCT for online ART, as well as the state-of-
the-art methods, still focus on DIR-based methods to get the defor-
mation vector field (DVF) from warping the planning CT (pCT) to
CBCT’s anatomy, then applying the DVF to the contours on pCT to
get the updated contours on CBCT [9]. However, DIR can generate
inaccurate segmentations in cases with more pronounced anatom-
ical changes or low soft tissue contrast [10].

Popular DIR methods include optical flow [11,12], b-spline based
[13], demons [14], ANTs [15], and so on. Recently DL–basedmeth-
ods have gained lots of attention because their state-of-art per-
formance in many applications. However, DL in medical image
registration has not been extensively studied until four to five years
ago [16]. A very important work that has been published by Jader-
berg et al. in 2015 proposed a spatial transformer network (STN),
which allows spatial transformations on the input image inside
a neural network and is differentiable that can be added on any
other existing architectures [17]. STN network has inspired lots of
unsupervised DL–based DIRmethods. A typical unsupervised DIR
model can be divided into two parts: DVF prediction and spatial
transformation. In DVF prediction, a neural network takes a pair
of fixed and moving images as input and outputs a DVF. Then in
spatial transformation, the STN network warps the moving images
according to the predicted DVF to get the moved images. The loss
function to train the model is usually composed of image simi-
larity loss between the fixed and moved images and a regulariza-
tion term on DVF. One of the popular unsupervised DL based
DIR methods—Voxelmorph, combined a probabilistic generative
model and aDLmodel for diffeomorphic registration [18]. Another
similar work FAIM, used a U-Net architecture to predict DVF
directly and a STN network to warp images [19]. VTN proposed
by Zhao et al., integrated affine registration into the DIR network
and added additional invertibility loss that encourages backward
consistency [20].

It is reasonable to use contour propagation for autosegmentation
in online ART, because DIR methods leverage prior knowledge
from contours on pCT. DIR between daily/weekly CBCTs and pCTs
is often used in H&N ART workflows to get the most up-to-date
anatomy. Currently, the processes of CBCT-to-sCT conversion and
pCT-to-CBCT DIR are always done separately. Therefore, we pro-
pose a method that combines a CycleGAN model and a DL–based
DIR model together and jointly trains them. The CycleGANmodel
converts CBCT to sCT images, and the sCT generated is used by
the DIRmodel for registration to the same imaging modality (sCT-
to-CT), rather than across different imaging modalities (CBCT-
to-CT). This is important, because DIR is consideredmore accurate
within the same imaging modality than across different modalities
[21]. The DIR model generates DVFs and deformed planning CTs
(dpCT) by deforming the pCT to the sCT’s anatomy, and the gener-
ated dpCT is used to guide CycleGAN to generate a more accurate
sCT from CBCT during the CycleGAN training. A better quality
sCT then leads to more accurate image registration. In this way, the
two DL models can improve each other through their interaction,
rather than training each alone. This method can also generate sCT
fromCBCT and updated contours from contour propagation at the

same time for ART. Overall, we developed a method that can gen-
erate segmentations on CBCT and sCT from CBCT jointly, accu-
rately, and efficiently.

2. DATA

We retrospectively collected data from 124 patients with H&N
squamous cell carcinoma treated with external beam radiotherapy
with a radiation dose around 70 Gy. Each patient case includes a
pCT volume acquired before the treatment course, OAR and target
segmentations delineated by physicians on the pCT and a CBCT
volume acquired around fraction 20 during the treatment course.
The pCT volumes were acquired by a Philips CT scanner with 1.17
× 1.17 × 3.00mm3 voxel spacing. TheCBCT volumeswere acquired
by Varian On-Board Imagers with 0.51 × 0.51 × 1.99 mm3 voxel
spacing and 512 × 512 × 93 dimensions. The pCT was rigidly regis-
tered to the CBCT through Velocity (Varian Inc., Palo Alto, USA).
Therefore, the rigid-registered pCT has the same voxel spacing and
dimensions as the CBCT. After rigid registration, the dimensions
of the pCT and CBCT volumes were both downsampled to 256 ×
256 × 93 from 512 × 512 × 93, then cropped to 224 × 224 × 80.
Wedivided the dataset into 100/4/20 for training/validation/testing,
respectively. Since our proposed model is an unsupervised learning
method, it does not need contours on pCTor ground truth contours
on CBCT for training. However, we needed ground truth contours
to evaluate the accuracy of the proposed DIR network. We selected
18 structures that are either critical OARs or have large anatomical
changes during radiotherapy courses: left and right brachial plexus;
brainstem; oral cavity; middle, superior, and inferior pharyngeal
constrictor; esophagus; nodal gross tumor volume (nGTV); larynx;
mandible; left and right masseter; left and right parotid gland; left
and right submandibular gland; and spinal cord. The contours of
the these 18 structures were first propagated from pCT to CBCT
by using rigid and DIR in velocity, then they were modified and
approved by a radiation oncologist to obtain the ground truth for
validation and testing.

3. METHODS

3.1. Overview of CycleGAN

Our previous study used aCycleGANarchitecture to convert CBCT
to sCT images that have accurate HU values and fewer artifacts [7].
The architecture we used in the current study is shown in Figure 1.
It has two generators with aU-Net architecture and two discrimina-
tors with a patchGAN architecture. GA generates sCT from CBCT,
and GB generates sCBCT from CT. DA distinguishes between sCT
and CT, and DB distinguishes between sCBCT and CBCT. There
are two cycles in the CycleGAN: 1.GA takes the CBCT as input and
outputs an sCT, then GB takes the sCT as input and outputs a cycle
CBCT (cCBCT); 2.GB takes the CT as input and outputs an sCBCT,
then GA takes the sCBCT as input and outputs a cycle CT (cCT).
Even though GA is used to output sCT from CBCT, it still can gen-
erate an identical CT (iCT) if the input is CT, and vice versa. In
summary, the loss function for the generators is

ℒG = ℒGAN−G + 𝛼 ×ℒCycle + 𝛽 ×ℒIdentity, (1)
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Figure 1 CycleGAN model architecture. The left figure is the architecture of CycleGAN and the right figure is the neural networks of
the generators and discriminators used in the CycleGAN. Purple arrows illustrate the flow of one cycle and red arrows illustrate the flow
of another cycle. Blue dashed lines connect the values used in the loss function.

ℒGAN−G = 1
m

∑m
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((
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(
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))2) ,

(2)
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1
m

∑m
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(|cCBCTi − CBCTi| + |cCTi − CTi|) , (3)
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1
m
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(|iCTi − CTi| + |iCBCTi − CBCTi|) . (4)

The loss function for the discriminators is

ℒD = ℒGAN−D, (5)

ℒGAN−D = 1
m

∑m

i=1

((
1 − DA

(
CTi

))2 + (
DA

(
sCTi

))2
2

+ (1−DB(CBCTi))2+(DB(sCBCTi))2
2

)
.

(6)

For more details, the reader is referred to Liang et al. [7].

3.2. Overview of Voxelmorph

Recently, learning-based DIR methods have gained attention for
their fast deployment compared to classical DIR techniques. One
of the state-of-the-art networks is Voxelmorph [18]. This model
assumes that the DVF can be defined by the following ordinary dif-
ferential equation (ODE):

𝜕𝜙(t)

𝜕t
= z

(
𝜙(t)) , (7)

where t is time, z is velocity field and 𝜙 is DVF. 𝜙(0) = Id is the
identity transformation. 𝜙(1) is the final registration field obtained
by integrating the stationary velocity field z over t = [0, 1]. In this
way, deformations are diffeomorphic, differentiable and invertible,
so they can preserve topology. Given this assumption, Voxelmorph
takes moving image pCT

(
Im
)
and fixed image sCT

(
If
)
as inputs,

and it outputs the voxel-wisemean
(
𝜇z|Im,If

)
and variance

(
Σz|Im,If

)

of a velocity field with a U-Net architecture, as shown in Figure
2(a). Then, velocity field z is sampled from the predicted 𝜇z|Im,If and
Σz|Im,If with the following equation:

z = 𝜇z|Im,If +
√

Σz|Im,Ifr, (8)

where r is a sample from the standard normal distribution: r ∼
𝒩 (0, I) . Given velocity field z, DVF

(
𝜙z
)
can be calculated with

scaling and squaring operations. Finally, a spatial transform layer
is integrated to warp pCT to sCT’s anatomy by using the pre-
dicted DVF to get the dpCT

(
I′m
)
. New contours can also be

calculated with pCT contours and the predicted DVF through
the spatial transform layer. The loss function of the Voxelmorph
architecture is

ℒV = ℒR +ℒImage_Similarity, (9)

ℒR = 1
2

(
tr
(
𝜆DΣz|Im,If − logΣz|Im,If

)
+ 𝜇T

z|Im,IfΛz𝜇z|Im,If
)
, (10)

ℒImage_Similarity =
1

2𝜎2m
∑m

i=1
‖I′m − If‖2, (11)

whereℒR is derived from the Kullback–Leibler divergence of pos-
terior probability p

(
z|Im; If) and approximate posterior probability

𝒩
(
z;𝜇z|Im,If ,Σz|Im,If

)
. ℒR encourages the posterior to be close to

the prior p (z), andℒImage_Similarity encourages the warped images to
be similar to fixed images. For more details, the reader is referred
to Dalca et al. [18].

3.3. 5-cascaded Voxelmorph

Recursive cascaded networks for DIR have been shown to signif-
icantly outperform state-of-the-art learning-based DIR methods
[22]. Therefore, we used the 5-cascaded Voxelmorph network in
this study to gain better DIR performance; its architecture is shown
in Figure 2(b). The input of the 5-cascaded Voxelmorph is also pCT(
Im
)
and sCT

(
If
)
, and we cascade the Voxelmorph by successively

performing DIR between warped images
(
I(n)m

)
and fixed images
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Figure 2 The architecture of Voxelmorph (a) and 5-cascaded Voxelmorph (b). The orange dashed lines illustrate the loss function.

Figure 3 The architecture of the joint model and its training scheme. Black dashed lines illustrate the loss function.

(
If
)
. Each cascade predicts a new DVF between fixed images and

previously predicted warped images. Thus, the final DVF is a com-
posite of all the predicted DVFs:

𝜙z = 𝜙z5◦𝜙z4◦⋯◦𝜙z1 . (12)

The final warped images are constructed by

I(5)m = 𝜙z ◦ Im. (13)

3.4. Joint Model

The performance of DIR highly depends on the image quality of the
fixed andmoving images. In our case, the image quality of the fixed
images, which have a lot of artifacts and a different HU range from
the moving images, is the main factor that causes DIR errors. Thus,
we used sCT images generated by CycleGAN, which has fewer arti-
facts and a similar range of CT HU values, in place of CBCT as
the fixed images. We propose a combined model that jointly trains
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CycleGANand 5-cascadedVoxelmorph, as shown in Figure 3.With
independently pretrained CycleGAN and 5-cascaded Voxelmorph
models, we first update the parameters of the CycleGAN generators
by using the loss function

ℒG = ℒGAN−G + 𝛼 ×ℒCycle + 𝛽 ×ℒIdentity + 𝛾 ×ℒSimilarity, (14)

ℒSimilarity =
1
k
∑
k

|||If − I(5)m
||| . (15)

Unlike training CycleGAN alone, dpCT adds another supervision
to guideCycleGAN to generatemore realistic sCT images by adding
ℒSimilarity to the joint model. Then, we update the parameters of the
CycleGAN discriminators with updated synthetic and real images.

Finally, we update the parameters of the 5-cascaded Voxelmorph
with the loss function

ℒV = ℒR1
+ℒR2

+ℒR3
+ℒR4

+ℒR5
+ℒImage_Similarity. (16)

The more realistic the sCT images that CycleGAN generates,
the more accurate the registration that DIR can perform. By
jointly training CycleGAN and Voxelmorph, the two networks can
improve each other for better results than training each separately.

3.5. Training Details

The CycleGAN, Voxelmorph, 5-cascaded Voxelmorph, and joint
models were all trained with a volume size of 224 × 224 × 80 on an

Table 1 Quantitative evaluation of segmentations by Elastix, Voxelmorph, 5-cascaded Voxelmorph and the joint model
with DSC, RAVD and HD95 metrics. The values in the table are mean ± SD.
Structure Method DSC RAVD HD95 (mm)

Elastix 0.80 ± 0.08 0.10 ± 0.07 1.27 ± 0.56
Voxelmorph 0.60 ± 0.18 0.14 ± 0.10 3.59 ± 2.01
5-cascaded Voxelmorph 0.65 ± 0.16 0.10 ± 0.08 3.10 ± 1.48

Left brachial plexus

Joint model 0.61 ± 0.18 0.12 ± 0.12 3.07 ± 2.74
Elastix 0.80 ± 0.08 0.10 ± 0.07 1.36 ± 0.70
Voxelmorph 0.60 ± 0.20 0.12 ± 0.09 3.76 ± 1.83
5-cascaded Voxelmorph 0.67 ± 0.16 0.09 ± 0.07 3.00 ± 1.42

Right brachial plexus

Joint model 0.63 ± 0.18 0.14 ± 0.11 2.92 ± 2.53
Elastix 0.94 ± 0.03 0.01 ± 0.01 0.51 ± 0.00
Voxelmorph 0.89 ± 0.05 0.08 ± 0.06 1.94 ± 0.60
5-cascaded Voxelmorph 0.90 ± 0.04 0.03 ± 0.05 0.69 ± 0.58

Brainstem

Joint model 0.94 ± 0.06 0.01 ± 0.02 0.66 ± 0.55
Elastix 0.95 ± 0.03 0.02 ± 0.02 1.62 ± 0.54
Voxelmorph 0.91 ± 0.04 0.05 ± 0.03 3.77 ± 1.31
5-cascaded Voxelmorph 0.92 ± 0.03 0.01 ± 0.03 1.74 ± 1.10

Oral cavity

Joint model 0.94 ± 0.04 0.01 ± 0.03 1.77 ± 1.15
Elastix 0.73 ± 0.08 0.19 ± 0.10 2.62 ± 0.98
Voxelmorph 0.65 ± 0.15 0.16 ± 0.13 4.22 ± 2.53
5-cascaded Voxelmorph 0.71 ± 0.10 0.11 ± 0.10 2.07 ± 2.21

Middle pharyngeal
constrictor

Joint model 0.75 ± 0.12 0.10 ± 0.12 2.00 ± 2.25
Elastix 0.68 ± 0.12 0.27 ± 0.13 2.66 ± 1.31
Voxelmorph 0.66 ± 0.10 0.15 ± 0.11 3.50 ± 2.69
5-cascaded Voxelmorph 0.72 ± 0.08 0.13 ± 0.09 1.62 ± 1.63

Superior pharyngeal
constrictor

Joint model 0.72 ± 0.08 0.12 ± 0.12 1.78 ± 2.13
Elastix 0.83 ± 0.06 0.13 ± 0.10 2.23 ± 0.52
Voxelmorph 0.72 ± 0.13 0.17 ± 0.14 3.98 ± 1.94
5-cascaded Voxelmorph 0.83 ± 0.10 0.13 ± 0.14 2.10 ± 1.33

Inferior pharyngeal
constrictor

Joint model 0.85 ± 0.12 0.12 ± 0.13 2.11 ± 1.86
Elastix 0.85 ± 0.08 0.09 ± 0.08 1.77 ± 0.36
Voxelmorph 0.75 ± 0.15 0.19 ± 0.16 3.33 ± 2.11
5-cascaded Voxelmorph 0.80 ± 0.10 0.11 ± 0.08 1.69 ± 0.95

Esophagus

Joint model 0.80 ± 0.10 0.09 ± 0.08 1.67 ± 1.67
Continued
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Table 1 Quantitative evaluation of segmentations by Elastix, Voxelmorph, 5-cascaded Voxelmorph and the joint model
with DSC, RAVD and HD95 metrics. The values in the table are mean ± SD. (Continued)
Structure Method DSC RAVD HD95 (mm)

Elastix 0.81 ± 0.07 0.13 ± 0.13 2.53 ± 1.07
Voxelmorph 0.67 ± 0.12 0.36 ± 0.21 6.19 ± 3.38
5-cascaded Voxelmorph 0.82 ± 0.11 0.12 ± 0.22 2.83 ± 3.52

nGTV

Joint model 0.81 ± 0.11 0.13 ± 0.22 2.89 ± 3.51
Elastix 0.89 ± 0.06 0.07 ± 0.10 3.60 ± 2.75
Voxelmorph 0.82 ± 0.11 0.07 ± 0.05 5.53 ± 3.30
5-cascaded Voxelmorph 0.88 ± 0.08 0.06 ± 0.06 3.70 ± 2.99

Larynx

Joint model 0.89 ± 0.09 0.07 ± 0.06 3.66 ± 3.22
Elastix 0.87 ± 0.05 0.15 ± 0.10 2.19 ± 0.82
Voxelmorph 0.85 ± 0.06 0.21 ± 0.12 2.48 ± 1.05
5-cascaded Voxelmorph 0.87 ± 0.04 0.18 ± 0.11 1.97 ± 0.92

Mandible

Joint model 0.88 ± 0.05 0.14 ± 0.10 1.88 ± 0.97
Elastix 0.90 ± 0.04 0.05 ± 0.03 1.49 ± 0.39
Voxelmorph 0.86 ± 0.04 0.06 ± 0.05 2.39 ± 0.69
5-cascaded Voxelmorph 0.87 ± 0.03 0.06 ± 0.05 1.46 ± 0.66

Left masseter

Joint model 0.91 ± 0.03 0.04 ± 0.06 1.36 ± 0.52
Elastix 0.91 ± 0.03 0.04 ± 0.04 1.53 ± 0.41
Voxelmorph 0.87 ± 0.04 0.11 ± 0.09 2.36 ± 0.75
5-cascaded Voxelmorph 0.89 ± 0.03 0.09 ± 0.07 1.19 ± 0.34

Right masseter

Joint model 0.92 ± 0.02 0.08 ± 0.07 1.20 ± 0.50
Elastix 0.89 ± 0.07 0.06 ± 0.07 1.67 ± 0.92
Voxelmorph 0.81 ± 0.07 0.18 ± 0.18 4.18 ± 2.37
5-cascaded Voxelmorph 0.88 ± 0.07 0.08 ± 0.11 1.03 ± 2.37

Left parotid gland

Joint model 0.91 ± 0.07 0.07 ± 0.10 1.06 ± 2.36
Elastix 0.88 ± 0.08 0.07 ± 0.08 1.93 ± 0.99
Voxelmorph 0.77 ± 0.09 0.26 ± 0.21 5.01 ± 2.21
5-cascaded Voxelmorph 0.86 ± 0.09 0.08 ± 0.05 1.92 ± 2.26

Right parotid gland

Joint model 0.86 ± 0.09 0.07 ± 0.05 1.76 ± 2.20
Elastix 0.81 ± 0.11 0.10 ± 0.09 2.13 ± 0.76
Voxelmorph 0.74 ± 0.12 0.20 ± 0.14 3.77 ± 1.57
5-cascaded Voxelmorph 0.79 ± 0.12 0.15 ± 0.11 2.63 ± 1.74

Left submandibular
gland

Joint model 0.79 ± 0.13 0.15 ± 0.13 2.66 ± 1.78
Elastix 0.83 ± 0.09 0.11 ± 0.13 2.25 ± 1.10
Voxelmorph 0.70 ± 0.13 0.20 ± 0.19 4.15 ± 1.99
5-cascaded Voxelmorph 0.78 ± 0.12 0.14 ± 0.11 2.97 ± 1.98

Right submandibular
gland

Joint model 0.78 ± 0.13 0.14 ± 0.22 2.82 ± 1.93
Elastix 0.91 ± 0.04 0.01 ± 0.02 0.74 ± 0.99
Voxelmorph 0.85 ± 0.04 0.10 ± 0.10 2.58 ± 1.08
5-cascaded Voxelmorph 0.89 ± 0.04 0.04 ± 0.05 0.92 ± 0.86

Spinal cord

Joint model 0.89 ± 0.04 0.03 ± 0.05 0.95 ± 0.70
Elastix 0.85 ± 0.07 0.09 ± 0.08 1.89 ± 0.84
Voxelmorph 0.76 ± 0.10 0.16 ± 0.12 3.71 ± 1.86

Average 5-cascaded Voxelmorph 0.82 ± 0.08 0.10 ± 0.09 2.04 ± 1.57
Joint model 0.83 ± 0.09 0.09 ± 0.10 2.01 ± 1.81

NVIDIA Tesla V100 GPU with 32 GB of memory. The maximum
cascades we can have for the volume size of 224 × 224 × 80 and
batch size of 1 without exceeding GPUmemory capacity is 5. Adam

optimization with a learning rate of 0.0002 was used for training all
the models. Hyperparameters 𝛼, 𝛽, 𝜎2 and 𝜆 were set to 10, 5, 0.02
and 30. The learning rate and the above hyperparameters were set
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to the same values as in previous studies. We found that the joint
model performs best with 𝛾 = 10.

3.6. Evaluation Methods

To quantitatively evaluate segmentation accuracy, we calculated the
dice similarity coefficient (DSC), relative absolute volume differ-
ence (RAVD) and 95%Hausdorff distance (HD95). DSC gauges the
similarity of the prediction and the ground truth by measuring the
volumetric overlap between them. It is defined as

DSC =
2|X ∩ Y||X| + |Y| , (17)

where X is the prediction and Y is the ground truth.

Like DSC, RAVD also measures volumetric discrepancies between
the ground truth and the predicted segmentation. RAVD is
defined as

RAVD =
|X − Y|

Y
. (18)

HD is the maximum distance from a set to the nearest point in
another set. It can be defined as

HD (X,Y) = max
(
dXY, dYX

)
= max

{
maxx∈X miny∈Y d

(
x, y

)
,maxy∈Y minx∈X d

(
x, y

)}
.

(19)

HD95 is based on the 95th percentile of the distances between
boundary points in X and Y. The purpose of this metric is to avoid
the impact of a small subset of the outliers.

We compared our proposed method, which is the joint model, with
Voxelmorph and 5-cascaded Voxelmorph. We also compared the
joint model with a non–learning-based state-of-the-art method.
Elastix is a publicly available intensity-based medical image regis-
tration toolbox, extended from ITK [23].

4. RESULTS

The quantitative evaluation results—in terms of DSC, RAVD and
HD95—between the predicted and the ground truth contours of the
18 structures for 20 test patients are shown in Table 1. Our proposed
method achievedDSCs of 0.61, 0.63, 0.94, 0.94, 0.75, 0.72, 0.85, 0.80,
0.81, 0.89, 0.88, 0.91, 0.92, 0.91, 0.86, 0.79, 0.78 and 0.89 for left

Table 2 P-values of paired Student t-tests for Elastix versus joint model, Voxelmorph versus joint model and
5-cascaded Voxelmorph versus joint model.
Structure Method DSC RAVD HD95

Elastix vs. joint model <0.01 0.46 <0.01
Voxelmorph vs. joint model 0.36 0.52 0.30Left brachial plexus
5-cascaded Voxelmorph vs. joint model <0.01 0.28 0.96
Elastix vs. joint model <0.01 0.20 0.02
Voxelmorph vs. joint model 0.07 0.59 0.11Right brachial plexus
5-cascaded Voxelmorph vs. joint model <0.01 0.09 0.88
Elastix vs. joint model 0.73 0.46 0.26
Voxelmorph vs. joint model <0.01 <0.01 <0.01Brainstem
5-cascaded Voxelmorph vs. joint model <0.01 0.04 0.81
Elastix vs. joint model 0.57 0.48 0.49
Voxelmorph vs. joint model <0.01 <0.01 <0.01Oral cavity
5-cascaded Voxelmorph vs. joint model <0.01 0.66 0.43
Elastix vs. joint model 0.31 0.05 0.20
Voxelmorph vs. joint model <0.01 0.04 <0.01Middle pharyngeal

constrictor
5-cascaded Voxelmorph vs. joint model 0.03 0.58 0.93
Elastix vs. joint model 0.13 <0.01 0.14
Voxelmorph vs. joint model <0.01 0.09 <0.01Superior pharyngeal

constrictor
5-cascaded Voxelmorph vs. joint model 0.80 0.72 0.37
Elastix vs. joint model 0.64 0.97 0.74
Voxelmorph vs. joint model <0.01 0.06 <0.01Inferior pharyngeal

constrictor
5-cascaded Voxelmorph vs. joint model 0.12 0.91 0.97

Continued
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Table 2 P-values of paired Student t-tests for Elastix versus joint model, Voxelmorph versus joint model and
5-cascaded Voxelmorph versus joint model. (Continued)
Structure Method DSC RAVD HD95

Elastix vs. joint model 0.02 0.25 0.80
Voxelmorph vs. joint model 0.03 0.06 <0.01Esophagus
5-cascaded Voxelmorph vs. joint model 0.59 0.65 0.95
Elastix vs. joint model 0.96 0.96 0.73
Voxelmorph vs. joint model <0.01 <0.01 <0.01nGTV
5-cascaded Voxelmorph vs. joint model 0.46 0.12 0.29
Elastix vs. joint model 0.88 0.71 0.89
Voxelmorph vs. joint model <0.01 0.47 <0.01Larynx
5-cascaded Voxelmorph vs. joint model 0.55 0.60 0.84
Elastix vs. joint model 0.05 0.43 0.02
Voxelmorph vs. joint model <0.01 <0.01 <0.01Mandible
5-cascaded Voxelmorph vs. joint model 0.45 <0.01 0.05
Elastix vs. joint model 0.30 0.70 0.44
Voxelmorph vs. joint model <0.01 0.03 <0.01Left masseter
5-cascaded Voxelmorph vs. joint model <0.01 0.01 0.23
Elastix vs. joint model 0.18 0.23 0.08
Voxelmorph vs. joint model <0.01 0.01 <0.01Right masseter
5-cascaded Voxelmorph vs. joint model <0.01 <0.01 0.93
Elastix vs. joint model 0.14 0.88 0.23
Voxelmorph vs. joint model <0.01 <0.01 <0.01Left parotid gland
5-cascaded Voxelmorph vs. joint model <0.01 0.36 0.41
Elastix vs. joint model 0.21 0.76 0.99
Voxelmorph vs. joint model <0.01 <0.01 <0.01Right parotid gland
5-cascaded Voxelmorph vs. joint model <0.01 0.74 <0.01
Elastix vs. joint model 0.08 0.18 0.26
Voxelmorph vs. joint model <0.01 0.23 <0.01Left submandibular

gland
5-cascaded Voxelmorph vs. joint model 0.70 0.97 0.44
Elastix vs. joint model 0.13 0.46 0.15
Voxelmorph vs. joint model <0.01 0.04 <0.01Right submandibular

gland
5-cascaded Voxelmorph vs. joint model 0.97 0.92 <0.01
Elastix vs. joint model 0.06 0.46 0.62
Voxelmorph vs. joint model <0.01 0.08 <0.01Spinal cord
5-cascaded Voxelmorph vs. joint model 0.74 0.91 0.95

brachial plexus, right brachial plexus, brainstem, oral cavity, mid-
dle pharyngeal constrictor, superior pharyngeal constrictor, infe-
rior pharyngeal constrictor, esophagus, nGTV, larynx, mandible,
left masseter, right masseter, left parotid gland, right parotid gland,
left submandibular gland, right submandibular gland and spinal
cord, respectively. We calculated paired Student t tests for all met-
rics for statistical analysis (Table 2). Our proposed method outper-
formedVoxelmorph for all the structures except left brachial plexus
and right brachial plexus. When compared to 5-cascaded Voxel-
morph, our proposed method performed better on brainstem, oral

cavity, middle pharyngeal constrictor, mandible, left masseter, right
masseter, left parotid land, right parotid gland and right sub-
mandibular gland in at least one evaluation metric. Our pro-
posed method performed comparably to Elastix on most of the 18
structures. However, its performance was superior to Elastix on
mandible, esophagus and superior pharyngeal constrictor, and infe-
rior to Elastix on left and right brachial plexus. For visual evalua-
tion, Figures 4 and 5 shows segmentations of two test patients from
Elastix, Voxelmorph, 5-cascaded Voxelmorph, the joint model and
the ground truth, where similar phenomenon can be observed.
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5. DISCUSSION AND CONCLUSION

The sCT images generated by the CycleGAN model trained
alone and the CycleGAN model trained jointly with 5-cascaded
Voxelmorph are shown in Figure 6. This shows that sCT images

generated by the joint model are smoother than sCT images gen-
erated by CycleGAN alone. This phenomenon accords with the
assumption that adding dpCT in theCycleGAN loss functionwould
introduce patient-specific knowledge to guide training, while the
CycleGAN trained alone lacks this information because of the
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Figure 4 The autosegmentation results on CBCT. The background images are CBCT. The rows from top to bottom are segmentation results by
different methods. Those methods are (a) Elastix, (b) Voxelmorph, (c) 5-cascaded Voxelmorph, (d) joint model and (e) ground truth for a test
patient on axial view. Different colors represent different structures which are illustrated in the legend.

unpaired training scheme. Consequently, better sCT image quality
can be achieved by jointly training, and doing so results in more
accurate image registration. Therefore, the joint model can outper-
form 5-cascaded Voxelmorph on some structures.

However, we did not see the learning-based methods surpass the
traditional DIR method. For most of the structures, our proposed
method was comparable to Elastix. Despite better performance
on mandible, esophagus and superior pharyngeal constrictor, the
joint model nevertheless performedworse on left and right brachial
plexus. This was because of an oversmooth sCT and because the
structure itself was vague on CT images. However, the joint model

after training can be completed in a minute for each patient, which
is much faster than Elastix. In online ARTworkflows, where time is
limited, the DL–based method is, thus, more suitable than Elastix.

One limitation of our method is its generalizability. According to
our previous study, a CycleGAN trained on CBCTs from one dis-
tribution may not work on CBCTs from another distribution [24].
Thus, the proposed model needs to be retrained or fine-tuned
before being deployed in other institutions. Another issue needs to
pay attention to is how to stabilize neural networks especially GAN-
based neural networks are well known for their instability. Some
research have been focused on this issue. One of the classical papers
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used their proposed analytic compressive iterative deep framework
to stabilize deep image reconstruction such that the neural net-
works would keep stabilized against input perturbation, adversarial
attacks and more input data [25].

In conclusion, we developed a learning-based DIRmethod for con-
tour propagation that can be used in ART. The proposed method
can generate sCTs with correct CT numbers for dose calculation
and, at the same time, rapidly propagate the contours from pCT to
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Figure 5 The autosegmentation results on CBCT. The background images are CBCT. The rows from top to bottom are segmentation results by
different methods. Those methods are (a) Elastix, (b) Voxelmorph, (c) 5-cascaded Voxelmorph, (d) joint model and (e) ground truth for a test
patient on axial view. Different colors represent different structures which are illustrated in the legend.

CBCT for treatment replanning. As such, this is a promising tool
for external beam online ART.
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Figure 6 Axial view of CBCT and sCT images. From left to right, the images are CBCT, sCT generated by CycleGAN only and sCT
generated by the joint model. HU window is (−500, 500).
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